核电站排出的废水怎么处理
1、化学沉淀法
化学沉淀法是将沉淀剂与废水中微量的放射性核素发生共沉淀作用的方法。废水中放射性核素的氢氧化物、碳酸盐、磷酸盐等化合物大都是不溶性的,因而能在处理中被除去。
化学处理的目的是使废水中的放射性核素转移并浓集到小体积的污泥中去,而使沉积后的废水剩余很少的放射性,从而能够达到排放标准。
2、离子交换法
离子交换法采用离子交换树脂,适用于含盐量较低的废液。当含盐量较高时,用离子交换树脂来处理所花的费用比选择性工艺要高。这主要是低选择性的树脂对放射性核素有很大的关联。在放射性废水净化中,利用电渗析的方法可以增加离子交换工艺的利用效率。
3、吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择。常用的吸附剂有活性炭、沸石、高岭土、膨润土、黏土等。
4、蒸发浓缩
蒸发浓缩法具有较高的浓缩因子和净化系数,多用于处理中、高水平放射性废水。蒸发法的工作原理是:将放射性废水送入蒸发装置,同时导入加热蒸汽将水蒸发成水蒸气,而放射性核素则留在水中。蒸发过程中形成的凝结水排放或回用,浓缩液则进一步进行固化处理。
5、膜分离技术
膜技术是处理放射性废水的比较高效、经济、可靠的方法。由于膜分离技术具有出水水质好、物料无相变、低能耗等特点,膜技术受到了积极的研究。
6、生物处理法
生物处理法包括植物修复法和微生物法。植物修复是指利用绿色植物及其根际土著微生物共同作用以清除环境中的污染物的一种新的原位治理技术。
7、磁-分子法
该法以一种称为铁蛋白的蛋白质为基础,将其改性后,利用磁性分子选择性地结合污染物,再用磁铁将其从溶液中去除,然后被结合的金属通过反冲洗磁性滤床得到回收。
8、惰性固化法
这一新工艺利用低温(《 90℃)凝固法来稳定高碱性、低活度的放射性废液,即将废液转化为惰性固化体。
9、零价铁渗滤反应墙技术
渗滤反应墙是目前在欧美等发达国家新兴起来的用于原位去除污染地下水中污染组分的方法。PRB一般安装在地下蓄水层中,垂直于地下水流方向,当污染的地下水流在自身水力梯度作用下通过反应墙时,污染物与墙体中的反应材料发生物理、化学反应而被去除,从而达到污染修复的目的。
想问一下正常的核污水是怎么处理的
核废水处理方法:
1、化学沉淀法
化学沉淀法是将沉淀剂与废水中微量的放射性核素发生共沉淀作用的方法。废水中放射性核素的氢氧化物、碳酸盐、磷酸盐等化合物大都是不溶性的,因而能在处理中被除去。
化学处理的目的是使废水中的放射性核素转移并浓集到小体积的污泥中去,而使沉积后的废水剩余很少的放射性,从而能够达到排放标准。
此法优点是费用低廉,对数放射性核素具有良好的去除效果,能够处理那些非放射性成分及其浓度以及流化相当大的废水,使用的处理设施和技术都有相当成熟的经验。
2、离子交换法
许多放射性核素在水中呈离子状态,特别是经过化学沉淀处理后的放射性废水,由于除去了悬浮的和胶体的放射性核素,剩下的几乎是呈离子状态的核素,其中大多数是阳离子。
并且放射性核素在水中是微量存在的,因而很适合离子交换处理,并且在没有非放射性离子干扰的情况下,离子交换能够长时间有效工作。
但是,该法存在一个较致命的弱点,当废液中放射性核素或非放射性离子含量较高时,树脂床很快会穿透而失效,而通常处理放射性废水的树脂是不进行再生处理的,所以一旦失效应立即更换。
离子交换法采用离子交换树脂,适用于含盐量较低的废液。当含盐量较高时,用离子交换树脂来处理所花的费用比选择性工艺要高。这主要是低选择性的树脂对放射性核素有很大的关联。在放射性废水净化中,利用电渗析的方法可以增加离子交换工艺的利用效率。
3、吸附法
吸附法是利用多孔性固态物质吸附去除水中重金属离子的一种有效方法。吸附法的关键技术是吸附剂的选择。常用的吸附剂有活性炭、沸石、高岭土、膨润土、黏土等。
4、蒸发浓缩
蒸发浓缩法具有较高的浓缩因子和净化系数,多用于处理中、高水平放射性废水。蒸发法的工作原理是:将放射性废水送入蒸发装置,同时导入加热蒸汽将水蒸发成水蒸气,而放射性核素则留在水中。
蒸发过程中形成的凝结水排放或回用,浓缩液则进一步进行固化处理。蒸发浓缩法不适合处理含有挥发性核素和易起泡沫的废水;热能消耗大,运行成本较高;同时在设计和运行时还要考虑腐蚀、结垢、爆炸等潜在威胁。
为了提高蒸汽利用率,降低运行成本,各国在新型蒸发器的研制方面一直不遗余力,如在蒸汽压缩式蒸发器、薄膜蒸发器、真空蒸发器等新型蒸发器方面都有显著成效。
5、膜分离技术
膜技术是处理放射性废水的比较高效、经济、可靠的方法。由于膜分离技术具有出水水质好、物料无相变、低能耗等特点,膜技术受到了积极的研究。
国外所采用的膜技术主要有:微滤、超滤、纳滤、水溶性多聚物-膜过滤、反渗透(RO)、电渗析、膜蒸馏、电化学离子交换、液膜、铁氧体吸附过滤膜分离及阴离子交换纸膜等方法。
6、生物处理法
生物处理法包括植物修复法和微生物法。植物修复是指利用绿色植物及其根际土著微生物共同作用以清除环境中的污染物的一种新的原位治理技术。
从现有的研究成果看,适用的生物修复技术类型主要有人工湿地技术、根际过滤技术、植物萃取技术、植物固化技术、植物蒸发技术。试验结果表明,几乎水体中所有的铀都能富集于植物的根部。
微生物治理低放射性废水是20世纪60年代开始研究的新工艺,用这种方法去除放射性废水中的铀国内外均有一定研究,但目前多处于试验研究阶段。
用微生物菌体作为生物处理剂,吸附富集回收存在于水溶液中的铀等放射性核素,效率高,成本低,耗能少,而且没有二次污染物,可以实现放射性废物的减量化目标,为核素的再生或地质处置创造有利条件。
7、磁-分子法
美国电力研究所(EPRI)开发出Mag-Mole-cule法,用于减少锶、铯和钴等放射性废物的产生量。该法以一种称为铁蛋白的蛋白质为基础,将其改性后,利用磁性分子选择性地结合污染物,再用磁铁将其从溶液中去除,然后被结合的金属通过反冲洗磁性滤床得到回收。
8、惰性固化法
美国宾夕法尼亚州立大学和萨凡纳河国家实验室,已开发出一种将某些低放射性废液处理成固化体以便安全处置的新方法。这一新工艺利用低温(《 90℃)凝固法来稳定高碱性、低活度的放射性废液,即将废液转化为惰性固化体。
科学家们将最终的固化体称作“ hydroceramic”(一种素烧多孔陶瓷)。他们称,最终的固化体硬度非常大,性质稳定持久,能够将放射性核素固定在其沸石结构中,这种制备过程类似于自然界中岩石的形成过程。
9、零价铁渗滤反应墙技术
渗滤反应墙(permeable reactive barrier,PRB)是目前在欧美等发达国家新兴起来的用于原位去除污染地下水中污染组分的方法。
PRB一般安装在地下蓄水层中,垂直于地下水流方向,当污染的地下水流在自身水力梯度作用下通过反应墙时,污染物与墙体中的反应材料发生物理、化学反应而被去除,从而达到污染修复的目的。
这是一种被动式修复技术,很少需要人工维护、费用很低。Fe0-PRB技术作为PRB技术的一个重要分支,在许多国家和地下水污染处理的众多方面得到了研究和发展
中国核电站的废水怎么处理
田湾核电站含油废水处理系统是该电站的重要配套工程,担负着处理核岛及常规岛区所排放含油废水的任务。其设备主要安装在BOP南区污水处理站含油废水处理厂房内,该厂房为砖混结构,面积约150m2(包括除油调节池面积),工程总造价约40万元,其中设备造价约30万。设计布置了两套含油废水处理设备,每套设备的处理能力为15m3/h,单套系统可独立运行,互为备用。含油废水经过该套设备处理后直接达标排放,分离出的废油收集至废油箱,定期清理。1、含油废水的来源及特点1.1含油废水的来源本项目含油废水的来源为:(1)汽轮机、发电机及补水泵的油系统,以及汽轮机厂房内的凝汽器泵房油系统;(2)柴油发电机组、燃料及润滑油系统;(3)有可能发生油喷溅和泄漏的房间地面排水;(4)应急排油以及室外变压器雨水坑的雨水;(5)电缆房间以及阻燃电缆的电缆通道等灭火后排水。1.2 含油废水的特点(1)油种类多:包括有润滑油、各类机油、尽缘油(如变压器油、电缆油)等。(2)水质水量变化大:电站运行时油质量浓度不高,即油≤100mg/L;悬浮物为SS≤200mg/L;大修时,油质量浓度较高,达1000mg/L以上,悬浮物浓度也较高。正常工况下,含油废水最大日排水量为100m3;极限情况(电器厂房火灾),含油废水最大日排水量为160m3,最大小时排水量为50m3。2、工艺流程及出水排放标准2.1 工艺流程含油废水处理系统设计工艺流程见图1。废水首先进进格栅以往除废水中的漂浮物,再汇人调节池,以调节水量和均化水质,后由潜污泵提升至同向流隔油池,往除废水中的分散油,而后通过加压泵提升至高效油水分离器,深度除油,分离后的油进进废油箱,出水则达标排放。2.2 出水排放标准出水水质达到《国家污水综钠瞰标准》(GB8978--1996)一级标准:SS≤30mg/L,油类≤5mg/L。3、主要设备及构筑物3.1调节池主要用于调节水量和均化水质,为钢混结构,有效容积为160m3,设计水力停留时间为24h,池内置提升泵及回流设施,单套系统设提升泵2台(1用1备,Q=17m3/h,H=8.0m,N=1.6KW。3.2 同向流隔油池主要用于往除废水中的分散油。其原理为油水在斜板中向上流的过程中,由于油水密度差,油浮在水面上,靠斜板底面,水在下面,这样通过一系列的集水设备,使下面的水流出设备外,油浮于设备上方。油通过集油管,流人浓缩池中,浓缩后排出,从而达到油水分离的目的。该套设备由江苏鹏鹞团体有限公司提供,型号GYT—15(共2台),规格尺寸1.7m×l.05m×l.6m,Q235钢制。特点:处理效率较高(对含油废水含油浓度较高时,即含油质量浓度≥1000mg/L时处理效果较好)、处理量大、无能耗、无运行用度、自动运行、维护简单、占地面积小等。3.3 高效油水分离器废水经螺杆泵加压进进油水分离器,首先经前级过滤装置过滤,降低废水悬浮物后进进粗粒化处理和吸附聚结处理。该处理装置将强化重力分离、粗粒化、吸附聚结处理工艺过程有机地组合在一钢质圆筒形整体结构中,与输液泵、过滤器组合成处理装置。含油废水’》含油废水经亲油性滤芯过滤,油粒在滤芯上吸附聚集成大油滴上浮至集油腔,定期排出,出水则排放。该套设备由江苏鹏鹞团体有限公司提供,型号GJSZ—15B(共2台)。配套4台螺杆泵(型号为1G58—1—Ⅱ,功率为7.5kW),2台进水泵,2台反冲洗泵,以及功率为6.0kW的电加热装置。特点:该套设备具有结构紧凑、占地少、安装调试简单、全自动运行、维护治理简单、分离效率高、能耗低等优点;同时,由于其处理工艺充分利用了重力分离特性因素,因此,对各种处理难度较高的含油废水’》含油废水工况具有较广泛的适应能力,完全适用于不含表面活性剂的各类机油、尽缘油、润滑油、动植物油及部分重油等油品的含油废水处理。3.4运行控制该套含油废水处理系统控制采用PLC作为中心控制器,主要控制提升泵、高效油水分离器进水泵、反冲洗泵以及高效油水分离器等装置的自动运行。提升泵自动相互切换,在12h内交替运行。4、运行中出现的题目探讨4.1节能方案改进实际运行表明,由于含油废水的原水含油量较低,同向流隔油池处理效果不明显,且含油废水经过泵2次加压提升至油水分离器中,增加电耗,不经济。因此,决定在调节池与加压泵间增加一套真空引水器的辅助管路系统,该系统的进水管引自调节池出水管则接人到加压泵进水管上,即该套系统不经过同向流隔油池,是原工艺的一种旁路补充,对原工艺无影响,其工艺流程变更见图2。当含油废水的含油量较低时,可采用该辅助管路系统,即直接用加压泵把含油废水通过该系统送至前级过滤器,减少一级泵提升,达到了运行节能的目的;当含油废水含油质量浓度》1000mg/L时,则可采用原设计工艺。4.2 螺杆泵运行噪音及震动偏大设备运行时,高效油水分离器螺杆泵运行噪音及震动偏大,严重影响设备运行及四周工作环境。(1)分析原因:水泵安装存在一些缺陷,如水泵基础不是独立的,且未加减震垫,水泵进出口管路为硬性连接等,势必造成水泵运行噪音及震动偏大。对上述缺陷进行相应技术改造后,水泵运行噪音及震动有一定改善。但是,运行一段时间后,水泵噪音及震动又偏大,因此,水泵本身必存在质量题目。(2)采取措施:厂家现场检查启动该水泵后,决定更换水泵。水泵更换完毕后,再启动水泵,噪音及震动正常,运行一段时间后,噪音及震动仍正常。5、结语(1)本系统采用了物化方法(“隔油+粗粒化分离工艺”)来处理核电站’》核电站含油废水,即选用高效油水分离器作为油的终极处理手段,其中,隔油采用同向流隔油池装置,粗粒化分离则采用高效油水分离器装置。实际运行表明,其完全满足出水排放标准油类《5mg/L)的要求,同时,该系统具有工艺简单、全自动运行、占地面积小、投资省和运行维护用度低等优点。(2)经济分析。本套系统运行用度较低,主要用度为电耗,分析设备用电消耗如表1所示。注:加压泵及提升泵停运时,反冲洗泵启动,反之则相反;电加热平时基本不开启,故不考虑。以上按1套设备24h连续运行考虑,则处理水量为360m3,每m3废水处理耗电量0.61KW•h,按0.52元/(KW•h)计,耗电费0.32元/m3。采用节能改造后的方案运行(提升泵及隔油池不运行),则每m3废水处理耗电量0.51KW•h,按0.52元/(KW•h)计,耗电费为0.27元m3。(3)该系统自2003年8月投进运行以来,经过必要的技术改造后,各设备运行工况较好,日均匀处理含油废水量达100m3,废水中油类及悬浮物均在油水分离器中被有效往除掉(往除率稳定在85%-95%),系统出水水质符合《国家污水综合排放标准》(GB8978—1996)一级标准要求。