#大有学问#
题目一:解方程:
x²+y²+5x−11y+4=0,x²−5xy+6y²+4x−10y+4=0;
题目二:已知x=√(3+√5)−√(3−√5),
求:³√(5+√26x)+³√(5−√26x)
题目三:解方程:
√(x²+5x−6)+√(3x²−8x+5)=3−3x
题目四:解方程组:
x²−3xy−10y²−3x+y+2=0,x²−2xy−3y²+3x−5y+2=0;
题目五:解方程:
(√(x²+x−1)+√(2x²+2x−3))/(5(x²+x)−6−√(3x²+3x−5)−√(4x²+4x−7))=1
展开全文
分析题目:
题目一:
x²+y²+5x−11y+4=0,x²−5xy+6y²+4x−10y+4=0;
x²+5x+4+y²−11y=0,x²+4x+4−5xy−10y+6y²=0;
(x+2)²+y²+(x+2)−11y−2=0,(x+2)²−5(x+2)y+6y²=0;
直接换元p=x+2;
p²+y²+p−11y−2=0,p²−5py+6y²=0;
(p−2y)(p−3y)=0 → p=2y或p=3y:
题目二:
x=√(√(3+√5)−√(3−√5))²
=√(6−2√(3+√5)√(3−√5))=√(6−2√4)=√2
³√(5+√26x)+³√(5−√26x)=³√(5+2√13)+³√(5−2√13)
双换元:p=³√(5+2√13),q=³√(5−2√13);
p³+q³=5+2√13+5−2√13=10,
pq=³√(5+2√13)∙³√(5−2√13)=³√(25−4∗13)=−3;
(p+q)³=p³+3p²q+3pq²+q³=p³+q³+3pq(p+q);
(p+q)³+9(p+q)−10=0,(p+q)³−1+9(p+q)−9=0;
(p+q−1)((p+q)²+(p+q)+1)+9(p+q−1)=0;
(p+q−1)((p+q)²+(p+q)+10)=0;
(p+q−1)((p+q+1/2)²+39/4)=0;
p+q−1=0;
³√(5+2√13)+³√(5−2√13)=1;
³√(5+√26x)+³√(5−√26x)=1
题目三:
显然x≤1,x=1是方程的一个根
当x<1时,无意义。
综上:x=1
题目四:
x²−(3y+3)x−(10y²−y−2)=0
x²−(3y+3)x−(2y−1)(5y+2)=0
(x+2y−1)(x−5y−2)=0
x²−(2y−3)x−(3y²+5y−2)=0
x²−(2y−3)x−(3y−1)(y+2)=0
(x−3y+1)(x+y+2)=0
x+2y−1=0,x−3y+1=0;
或x+2y−1=0,x+y+2=0;
或x−5y−2=0,x−3y+1=0;
或x−5y−2=0,x+y+2=0;
解得:x=1/5,y=2/5;
或x=−5,y=3;
或x=−11/2,y=−3/2;
或x=−4/3,y=−2/3;
题目五:
√(x²+x−1)+√(2(x²+x)−3)+√(3(x²+x)−5)+√(4(x²+x)−7)=5(x²+x)−6
p=x²+x−1
√p+√(2(p+1)−3)+√(3(p+1)−5)+√(4(p+1)−7)=5(p+1)−6
√p+√(2p−1)+√(3p−2)+√(4p−3)=5p−1
−2√p=(√p−1)²−p−1
−2√(2p−1)=(√(2p−1)−1)²−2p
−2√(3p−2)=(√(3p−2)−1)²−3p+1
−2√(4p−3)=(√(4p−3)−1)²−4p+2
四式相加,左边即为已知条件代入:
−2(5p−1)=(√p−1)²+(√(2p−1)−1)²+(√(3p−2)−1)²+(√(4p−3)−1)²−10p+2
(√p−1)²+(√(2p−1)−1)²+(√(3p−2)−1)²+(√(4p−3)−1)²=0
(√p−1)=√(2p−1)−1=√(3p−2)−1=√(4p−3)−1=0
解得p=1 即:x²+x−1=1 即x²+x−2=0,解得x=1或-2