本文目录
- 小红书最火的数学题
- 断臂维纳斯有多高 全长2.04米(身高符合黄金分割比例)
- 世界上最难的数学题是哪一道
- 一道数学智力题求解
- 世界数学十大名题是哪几道
- 撒贝宁网红数学题如何解答
- 世界十大数学难题有哪些
- 那个网红川妹子出的题目是:根号(负2809),是负实数-53还是纯虚数53i
小红书最火的数学题
小红书最火的数学题:
有一天,教授叫来了ABC三人,并且将事先写准备好的三张纸条分别贴在了三人的额头上。接着教授说到:“你们每人的额头上都有一张纸条,并且每张纸条上都写了一个正整数。你们三人均可以看见除自己以外二人头上的数字,但唯独不准偷看自己头顶上的数字。另外,我还告诉你们,这三个数字中,有一个数是另外两个数之和。
”假如,我们现在知道A头顶的数字是78,请问,你能根据以上信息推理出B和C头顶上的数字分别是多少吗?
断臂维纳斯有多高 全长2.04米(身高符合黄金分割比例)
2019年高考全国Ⅰ卷数学第4题中,出现了考查断臂维纳斯身高的题目,考完之后,学生们都议论纷纷,使之很快上了热搜,成为一道“网红题”,该雕像是由古希腊著名雕塑家阿历山德罗斯制作的,许多人不知道断臂维纳斯有多高?经过测量,该雕塑高2.04米。
断臂维纳斯高度:2.04米
作为古希腊雕塑艺术的代表,断臂维纳斯制作于公元前150年左右,由古希腊雕塑家阿历山德罗斯用一块完整的大理石,经过精心雕刻而成,雕塑的头部和身躯均保存完整,但左臂从肩下已失,右膀只剩下半截上臂,目前收藏在法国的卢浮宫博物馆。
雕像是以古希腊神话中的爱与美女神维纳斯为创作背景,整个雕像体态优美、端庄,自然而又富有美感,椭圆形的面庞,还有着希腊式挺直的鼻梁、平坦的前额和丰满的下巴,同时雕像嘴角还有一抹自信而又安详的微笑,完美的展现了希腊妇女身上的美感和气质。
断臂维纳斯的上半身是裸体,下半身则裹着衣裙,不仅注重雕像的身体构造,同时他还注重细节处理,将裹裙的褶皱和摆动,都细致入微的雕刻出来,足见作者高超的雕刻技术。
至于断臂维纳斯有多高?测量之后,身高为2.04米,本没有什么,但经过数学家的测算,发现她的上半身和下半身比竟然满足黄金分割比例,人们很疑惑古希腊人是如何做到这一点的,这也是人们一直想要搞清楚的一个问题。
世界上最难的数学题是哪一道
世界上最难十大数学题
1、NP完全问题
世界上最难十大数学题_www.66152.COM
NP完全问题(NP-C问题),是世界七大数学难题之一。NP的英文全称是Non-deterministic Polynomial的问题,即多项式复杂程度的非确定性问题。简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。
2、霍奇猜想
世界上最难十大数学题_www.66152.COM
霍奇猜想是代数几何的一个重大的悬而未决的问题。由威廉瓦伦斯道格拉斯霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想,属于世界七大数学难题之一。
3、庞加莱猜想
世界上最难十大数学题_www.66152.COM
庞加莱猜想(Poincar conjecture)是法国数学家庞加莱提出的一个猜想,其中三维的情形被俄罗斯数学家格里戈里佩雷尔曼于2003年左右证明。2006年,数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。后来,这个猜想被推广至三维以上空间,被称为高维庞加莱猜想。提出这个猜想后,庞加莱一度认为自己已经证明了它。
4、黎曼假说概述
世界上最难十大数学题_www.66152.COM
有些数具有特殊的属性,它们不能被表示为两个较小的数字的乘积,如2,3,5,7,等等。这样的数称为素数(或质数),在纯数学和应用数学领域,它们发挥了重要的作用。所有的自然数中的素数的分布并不遵循任何规律。然而,德国数学家黎曼(1826-1866)观察到,素数的频率与一个复杂的函数密切相关。
5、杨米尔斯的存在性和质量缺口
世界上最难十大数学题_www.66152.COM
杨米尔斯的存在性和质量缺口是世界七大数学难题之一,问题起源于物理学中的杨米尔斯理论。该问题的正式表述是:证明对任何紧的、单的规范群,四维欧几里得空间中的杨米尔斯方程组有一个预言存在质量缺口的解。该问题的解决将阐明物理学家尚未完全理解的自然界的基本方面。
6、纳维-斯托克斯方程
世界上最难十大数学题_www.66152.COM
建立了流体的粒子动量的改变率(加速度)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力)以及重力之间的关系。这些粘滞力产生于分子的相互作用,能告诉我们液体有多粘。这样,纳维-斯托克斯方程描述作用于液体任意给定区域的力的动态平衡,这在流体力学中有十分重要的意义。
7、BSD猜想
世界上最难十大数学题_www.66152.COM
BSD猜想,全称贝赫和斯维纳通-戴尔猜想(Birchand Swinnerton-Dyer猜想),属于世界七大数学难题之一。给定一个整体域上的阿贝尔簇,猜想它的莫代尔群的秩等于它的L函数在1处的零点阶数,且它的L函数在1处的泰勒展开的首项系数与莫代尔群的有限部分大小、自由部分体积、所有素位的周期以及沙群有精确的等式关系。
8、哥德巴赫猜想
世界上最难十大数学题_www.66152.COM
哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。
9、四色定理
世界上最难十大数学题_www.66152.COM
四色定理又称四色猜想、四色问题,是世界三大数学猜想之一。四色定理的本质正是二维平面的固有属性,即平面内不可出现交叉而没有公共点的两条直线。四色问题的内容是:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。
10、费马大定理
世界上最难十大数学题_www.66152.COM
费马大定理,又被称为费马最后的定理,由17世纪法国数学家皮耶德费马提出。定理断言当整数n>2时,关于x,y,z的方程x^n+y^n=z^n没有正整数解。费马大定理提出后,曾经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁怀尔斯彻底证明。
世界上最难十大数学题_www.66152.COM
一道数学智力题求解
两个个位数乘积是三个不同质数乘积,也就是说,其中一个个位数是两个质数乘积,两个质数乘积为个位数的只有2×3=6
显然当6为个位数的时候肯定不是质数,所以6是十位数。
个位数的质数除了2、3以外只有5、7了
65是合数,所以只能是67。
1年后,老太太68是小屁孩17岁的4倍。
世界数学十大名题是哪几道
1、几何尺规作图问题
这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
4.做正十七边形。
以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
2、蜂窝猜想
四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。
3、孪生素数猜想
1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。孪生素数猜想至今仍未解决,但一般人都认为是正确的。
4、费马最后定理
在三百六十多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn
的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理)。
费马声称当n》2时,就找不到满足
xn +yn = zn
的整数解,例如:方程式
x3 +y3 = z3
就无法找到整数解。
始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快。
不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。
5、四色猜想
1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。
6、哥德巴赫猜想
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个》=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个》=9之奇数,都可以表示成三个奇质数之和。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
撒贝宁网红数学题如何解答
撒贝宁的数学题:小明像爸爸借了500块钱,向妈妈借了500块钱,他花了970,然后还了爸爸10元,又还了妈妈10元,自己留下了10元,这样他就欠爸爸490,欠妈妈490,那么490+490在加上小明手中的10元等于990,问那10元哪去了?
只见这个教授也是称:我对加减乘除都不太懂的。当时网友听完也是都笑了啊,你一个数学专家竟然说自己对最简单的加减乘除不大懂,这回答真的也是非常的专家啊。
世界十大数学难题有哪些
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题
难题”之二:霍奇(Hodge)猜想
难题”之三:庞加莱(Poincare)猜想
难题”之四:黎曼(Riemann)假设
难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口
难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
难题”之八:几何尺规作图问题
难题”之九:哥德巴赫猜想
难题”之十:四色猜想
那个网红川妹子出的题目是:根号(负2809),是负实数-53还是纯虚数53i
√(-2809)=√2809 √(-1)=(53)√(-1)=53i。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
简介
可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。