×

八年级上册数学课程讲解 数学

八年级上册数学课程讲解(有没有八年级上册数学教学讲解)

jnlyseo998998 jnlyseo998998 发表于2023-02-06 19:38:35 浏览27 评论0

抢沙发发表评论

本文目录

有没有八年级上册数学教学讲解

巩 固 与 反 思 尝试练习: 1) 教材P116练习1、2; 2) 教材P119练习. 小结与反思: 通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值,享受数学的应用美. 生:通过尝试练习进一步体会三种不同增长的函数模型的增长差异及其实际应用. 师:培养学生对数学学科的深刻认识,体会数学的应用美. 环节 呈现教学材料 师生互动设计 作 业 与 回 馈 教材P127 习题32(A组)第1~5题; (B组)第1题 课 外 活 动 收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用; 有时同一个实际问题可以建立多个函数模型.具体应用函数模型时,你认为应该怎样选用合理的函数模型? 第 1 页 共 84 页 目 录 第一章 2 §1.1 集合 2 §1.2集合间的基本关系 4 §1.3集合的基本运算 7 第二章 11 §2.1函数的概念 11 §2.2映射 14 §2.3函数的表示法 16 §2.4函数的单调性 19 §2.5函数的奇偶性 22 §2.6函数的最大(小)值 25 第三章 29 §3.1指数 29 §3.2指数函数及其性质 32 §3.3对数 36 §3.4对数的运算性质 38 §3.5对数函数(一) 41 §3.6对数函数(二) 44 §3.8对数函数(三) 48 §3.9幂函数 54 第四章 63 §4.1方程的根与函数的零点 63 §4.2用二分法求方程的近似解 71 §4.3几类不同增长的函数模型 78
第一章第一章第一章第一章 §1.1集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课 型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、 引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、 新课教学 (一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3. 思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征 第 83 页 共 84 页 组 织 探 究 3)通过对三个函数模型增长差异的比较,写出例2的解答. 生:分析数据特点与作用判定每一个奖励模型是否符合要求. 师:引导学生利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解答过程. 生:进一步认识三个函数模型的增长差异,对问题作出具体解答. 探 究 与 发 现 幂函数、指数函数、对数函数的增长差异分析: 你能否仿照前面例题使用的方法,探索研究幂函数、指数函数、对数函数在区间上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告. 师:引导学生仿照前面例题的探究方法,选用具体函数进行比较分析. 生:仿照例题的探究方法,选用具体函数进行研究、论证,并进行交流总结,形成结论性报告. 师:对学生的结论进行评析,借助信息技术手段进行验证演示.
例2.某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型: . 问:其中哪个模型能符合公司的要求? 探究: 1) 本例涉及了哪几类函数模型? 本例的实质是什么? 2)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗? 师:引导学生分析三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况. 生:进一步体会三种基本函数模型在实际中的广泛应用,体会它们的增长差异. 师:引导学生分析问题使学生得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择. 环节 呈现教学材料 师生互动设计 第 3 页 共 84 页 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 5. 元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作aA(或a A)(举例) 6. 常用数集及其记法 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。 (1) 列举法:把集合中的元素一一列举出来,写在大括号内。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1) 思考2,引入描述法 说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。 (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 如:{x|x-3》2},{(x,y)|y=x2+1},{直角三角形},…; 例2.(课本例2) 说明:(课本P5最后一段) 思考3:(课本P6思考
强调:描述法表示集合应注意集合的代表元素 {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。 辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。 说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (三)课堂练习(课本P6练习) 三、 归纳小结 本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。 四、 作业布置 书面作业:习题1.1,第1- 4题 五、 板书设计(略) §1.2集合间的基本关系 教材分析:类比实数的大小关系引入集合的包含与相等关系 了解空集的含义 课 型:新授课 教学目的:(1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别; 教学过程: 一、 引入课题 1、 复习元素与集合的关系——属于与不属于的关系,填以下空白: (1)0 N;(2) Q;(3)-1.5 R 2、 类比实数的大小关系,如5《7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题) 二、 新课教学 第 81 页 共 84 页 组 织 探 究 4)你能借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗? 5)根据以上分析,你认为就作出如何选择? 师:引导学生利用函数图象分析三种方案的不同变化趋势. 生:对三种方案的不同变化趋势作出描述,并为方案选择提供依据. 师:引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 生:通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本全的完整解答,然后全班进行交流.
数函数描述后期增长的 组 织 探 究 例1.假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元; 方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番. 请问,你会选择哪种投资方案? 探究: 1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系? 2)分析解答(略) 3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识? 师:创设问题情境,以问题引入能激起学生的热情,使课堂里的有效思维增强. 生:阅读题目,理解题意,思考探究问题. 师:引导学生分析本例中的数量关系,并思考应当选择怎样的函数模型来描述. 生:观察表格,获取信息,体会三种函数的增长差异,特别是指数爆炸,说出自己的发现,并进行交流. 师:引导学生观察表格中三种方案的数量变化情况,对于“增加量”进行比较,体会“直线增长”、“指数爆炸”等. 环节 教学内容设计 师生双边互动 第 5 页 共 84 页 (一) 集合与集合之间的“包含”关系; A={1,2,3},B={1,2,3,4} 集合A是集合B的部分元素构成的集合,我们说集合B包含集合A; 如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于(is contained in)B,或B包含(contains)A 当集合A不包含于集合B时,记作A B 用Venn图表示两个集合间的“包含”关系 (二) 集合与集合之间的 “相等”关系; ,则中的元素是一样的,因此 即 练习 结论: 任何一个集合是它本身的子集 (三) 真子集的概念 若集合,存在元素,则称
读作:A真包含于B(或B真包含A) 举例(由学生举例,共同辨析) (四) 空集的概念 (实例引入空集概念) 不含有任何元素的集合称为空集(empty set),记作: 规定: 空集是任何集合的子集,是任何非空集合的真子集。 (五) 结论: 1 2,且,则 (六) 例题 (1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。 (2)化简集合A={x|x-3》2},B={x|x5},并表示A、B的关系; (七) 课堂练习 (八) 归纳小结,强化思想 两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法; (九) 作业布置 1、 书面作业:习题1.1 第5题 2、 提高作业: 1 已知集合,≥,且满足,求实数的取值范围。 2 设集合, ,试用Venn图表示它们之间的关系。 板书设计(略) 第 79 页 共 84 页 教学过程与操作设计: 环节 教学内容设计 师生双边互动 创 设 情 境 材料:澳大利亚兔子数“爆炸” 在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气. 师:指出:一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型.可用指数函数描述一个种群的前期
课 外 活 动 查找有关系资料或利用internet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois),增强探索精神,培养创新意识. 收 获 与 体 会 说说方程的根与函数的零点的关系,并给出判定方程在某个区间存在根的基本步骤,及方程根的个数的判定方法; 谈谈通过学习求函数的零点和求方程的近似解,对数学有了哪些新的认识? §4.3几类不同增长的函数模型 教学目标: 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性. 过程与方法 能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用. 教学重点: 重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义. 难点 怎样选择数学模型分析解决实际问题. 教学程序与环节设计: 第 7 页 共 84 页 §1.3集合的基本运算 教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 课 型:新授课 教学重点:集合的交集与并集、补集的概念; 教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”; 教学过程: 一、 引入课题 我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢? 思考(P9思考题),引入并集概念。 二、 新课教学 1. 并集 一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集并集并集并集((((Union)))) 记作:A∪B 读作:“A并B” 即: A∪B={x|x∈A,或x∈B} Venn图表示: 说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。 例题(P9-10例4、例5)
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。 问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。 2. 交集 一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集交集交集交集((((intersection))))。 记作:A∩B 读作:“A交B” 即: A∩B={x|∈A,且x∈B} 交集的Venn图表示 说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。 例题(P9-10例6、例7) 拓展:求下列各图中集合A与B的并集与交集 说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集 3. 补集 全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集全集全集全集((((Universe)))),通常记作UUUU。 第 77 页 共 84 页 尝 试 练 习 1) 教材P106练习1、2题; 2) 教材P108习题3.1(A组)第1、2题; 3) 求方程的解的个数及其大致所在区间; 4) 求方程的实数解的个数; 5) 探究函数与函数的图象有无交点,如有交点,求出交点,或给出一个与交点距离不超过的点. 作 业 回 馈 1) 教材P108习题3.1(A组)第3~6题、(B组)第4题; 2) 提高作业: 1 已知函数 . (1)为何值时,函数的图象与轴有两个交点? (2)如果函数的一个零点在原点,求的值. 2 借助于计算机或计算器,用二分法求函数 的零点(精确到); 3 用二分法求的近似值(精确到). 环节 呈现教学材料 师生互动设计
说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。 问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。 2. 交集 一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集交集交集交集((((intersection))))。 记作:A∩B 读作:“A交B” 即: A∩B={x|∈A,且x∈B} 交集的Venn图表示 说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。 例题(P9-10例6、例7) 拓展:求下列各图中集合A与B的并集与交集 说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集 3. 补集 全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集全集全集全集((((Universe)))),通常记作UUUU。 第 77 页 共 84 页 尝 试 练 习 1) 教材P106练习1、2题; 2) 教材P108习题3.1(A组)第1、2题; 3) 求方程的解的个数及其大致所在区间; 4) 求方程的实数解的个数; 5) 探究函数与函数的图象有无交点,如有交点,求出交点,或给出一个与交点距离不超过的点. 作 业 回 馈 1) 教材P108习题3.1(A组)第3~6题、(B组)第4题; 2) 提高作业: 1 已知函数 . (1)为何值时,函数的图象与轴有两个交点? (2)如果函数的一个零点在原点,求的值. 2 借助于计算机或计算器,用二分法求函数 的零点(精确到); 3 用二分法求的近似值(精确到). 环节 呈现教学材料 师生互动设计 说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。 问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。 2. 交集 一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集交集交集交集((((intersection))))。 记作:A∩B 读作:“A交B” 即: A∩B={x|∈A,且x∈B} 交集的Venn图表示 说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。 例题(P9-10例6、例7) 拓展:求下列各图中集合A与B的并集与交集 说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集 3. 补集 全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集全集全集全集((((Universe)))),通常记作UUUU。 第 77 页 共 84 页 尝 试 练 习 1) 教材P106练习1、2题; 2) 教材P108习题3.1(A组)第1、2题; 3) 求方程的解的个数及其大致所在区间; 4) 求方程的实数解的个数; 5) 探究函数与函数的图象有无交点,如有交点,求出交点,或给出一个与交点距离不超过的点. 作 业 回 馈 1) 教材P108习题3.1(A组)第3~6题、(B组)第4题; 2) 提高作业: 1 已知函数 . (1)为何值时,函数的图象与轴有两个交点? (2)如果函数的一个零点在原点,求的值. 2 借助于计算机或计算器,用二分法求函数 的零点(精确到); 3 用二分法求的近似值(精确到). 环节 呈现教学材料 师生互动设计
第十一章 全等三角形
本章主要学习全等三角形的性质与判定方法,学习应用全等三角形的性质与判定解决实际问题的思维方式。教学重点:全等三角形性质与判定方法及其应用;掌握综合法证明的格式。教学难点:领会证明的分析思路、学会运用综合法证明的格式。教学关键提示:突出全等三角形的判定。
第十二章 轴对称
本章主要学习轴对称及其基本性质,同时利用轴对称变换,探究等腰三角形和正三角形的性质。教学重点:轴对称的性质与应用,等腰三角形、正三角形的性质与判定。教学难点:轴对称性质的应用。教学关键提示:突出分析问题的思维方式。
第十三章 实数
本章通过对平方根、立方根的探究引出无限不循环小数,进而导出无理数的概念,从而把有理数扩展到实数。教学重点:平方根、立方根、无理数和实数的有关概念与性质。教学难点:平方根及其性质;有理数、无理数的区别。教学关键提示:从生活实际入手,让学生经历无理数的发现过程,从而理解并掌握实数的有关概念与性质。
第十四章 一次函数
本章主要学习函数及其三种表达方式,学习正比例函数、一次函数的概念、图象、性质和应用,并从函数的观点出发再次认识一元一次方程、一元一次不等式及二元一次方程组。教学重点:理解正比例函数、一次函数的概念、图象和性质。教学难点:培养学生初步形成数形结合的思维模式。教学关键提示:应用变化与对应的思想分析函数问题,建立运用函数的数学模型。
第十五章 整式的乘除与因式分解
本章主要学习整式的乘除运算和乘法公式,学习对多项式进行因式分解。教学重点:整式的乘除运算以及因式分解。教学难点:对多项式进行因式分解及其思路。教学关键提示:引导学生运用类比的思想理解因式分解,并理解因式分解与整式乘法的互逆性。
再没有了

初中八年级数学知识点

各个科目都有自己的 学习 方法 ,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

轴对称图形:

一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

1、轴对称:

两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:

(1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:

(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

三、用坐标表示轴对称

1、点(x,y)关于x轴对称的点的坐标为(x,-y);

2、点(x,y)关于y轴对称的点的坐标为(-x,y);

3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

四、关于坐标轴夹角平分线对称

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x)

点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x)

初二数学下册知识点归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

初二数学学习技巧

自学能力的培养是深化学习的必由之路

在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。

我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。

自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。

因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。

学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。

自信才能自强

在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。

具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做, 其它 的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。

数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。

解题需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。


初中八年级数学知识点相关 文章 :

★ 八年级数学知识点整理归纳

★ 人教版八年级数学上册知识点总结

★ 初中八年级上册数学知识点

★ 初中八年级上册数学知识点总结归纳

★ 八年级数学知识点总结

★ 初二数学上册知识点总结

★ 初二数学知识点复习整理

★ 八年级上册数学知识点整理

★ 八年级数学知识点上册

我想要初二数学上册知识要点

初二数学上册知识点总结初二数学上册知识点总结初二数学上册知识点总结初二数学上册知识点总结 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角

八年级数学上册《全等三角形》知识点解析

  八年级数学上册《全等三角形》知识点解析1

  一、定义

  1.全等形:形状大小相同,能完全重合的两个图形.

  2.全等三角形:能够完全重合的两个三角形.

  二、重点

  1.平移,翻折,旋转前后的图形全等.

  2.全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.

  3.全等三角形的判定:

  SSS三边对应相等的两个三角形全等【边边边】

  SAS两边和它们的夹角对应相等的两个三角形全等【边角边】

  ASA两角和它们的夹边对应相等的两个三角形全等【角边角】

  AAS两个角和其中一个角的对边开业相等的两个三角形全等【边角边】

  HL斜边和一条直角边对应相等的两个三角形全等【斜边,直角边】

  4.角平分线的性质:角的平分线上的点到角的两边的距离相等.

  5.角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上.

  八年级数学上册《全等三角形》知识点解析2

  全等三角形

  定义:能够完全重合的两个三角形叫做全等三角形。

  理解:①全等三角形形状与大小完全相等,与位置无关;

  ②一个三角形经过平移、翻折、旋转可以得到它的全等形;

  ③三角形全等不因位置发生变化而改变。

  通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的`坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  八年级数学上册《全等三角形》知识点解析3

  一、三角形全等的判定

  1.三组对应边分别相等的两个三角形全等(SSS)。

  2.有两边及其夹角对应相等的两个三角形全等(SAS)。

  3.有两角及其夹边对应相等的两个三角形全等(ASA)。

  4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

  5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

  二、全等三角形的性质

  1.全等三角形的对应边相等;全等三角形的对应角相等。

  2.全等三角形的周长、面积相等。

  3.全等三角形的对应边上的高对应相等。

  4.全等三角形的对应角的角平分线相等。

  5.全等三角形的对应边上的中线相等。

  三、找全等三角形的方法

  (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;

  (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;

  (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;

  (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

  三角形全等的证明中包含两个要素:边和角。

  四、构造辅助线的常用方法

  关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

  角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

  数学待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  数学中什么叫棱

  物体上的条状突起,或不同方向的两个平面相连接的部分。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。在正方体和长方体中,具有12个棱长,且棱长在不同的几何体中有不同的特点。