×

一元二次不等式的解法导学案

一元二次不等式的解法导学案(数学的一元二次不等式的具体讲解)

jnlyseo998998 jnlyseo998998 发表于2023-01-26 06:39:45 浏览31 评论0

抢沙发发表评论

本文目录

数学的一元二次不等式的具体讲解

含有一个未知数且未知数的最高次数为2次的的不等式叫做一元二次不等式,它的一般形式是ax^2+bx+c》0或ax^2+bx+c《0(a不等于0),其中ax^2+bx+c实数域上的二次三项式。
一元二次不等式的解法1)当V(“V“表示判别是,下同)=b^2-4ac》=0时,二次三项式,ax^2+bx+c有两个实根,那么ax^2+bx+c总可分解为a(x-x1)(x-x2)的形式。这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。
1.最简单的分解因式,用十字相乘法,然后》0即是介在两根外,小于0则是介在两根内.
2.可以用配方,将一边配成平方和一个负数,将负数移到右边,就可以得到c^2大于或者小于某个数,c为左边的某个平方式.
3.解分式不等式,用数轴标根,非常方便,不知道现在的书里有没有,这是我们老师讲的方法,非常简便,就是在一个数轴上标出更个根,这些根把数轴分成了几个区间,第一个区间就是》0,第二个《0,第三个》0,第四个《0,以此类推.举个例子:
(x-2)(x-5)/(x-8)>0
区间为(8,正无穷大)(5,8)(2,5)(负无穷大,2)
《br》那么,第一个区间的值是>0,第三个也是>0
解就是((8,正无穷大)并(2,5)
这样的方法非常方便,如果没有学分式不等式,以后也会用到的.
4.最无奈的方法就是用韦达定理求判别式来算出两根,然后同样,如果不等式>0,X就在两根外,<0,在两根内

如何进行一元二次不等式的教学设计

【教学目标】
知识与技能目标:
(1)理解一元二次方程、一元二次不等式与二次函数的关系;
(2)掌握图象法解一元二次不等式的方法;
(3)培养学生数形结合的能力,分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;
过程与方法目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.
情态目标:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】
(1)从实际情境中抽象出一元二次不等式模型;
(2)一元二次不等式的解法。
【教学难点】
理解二次函数、一元二次方程与一元二次不等式解集之间的关系。
【授课类型】:新授课
【教学过程】
一.课题导入
问题提出:汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距”。刹车距是分析事故的一个重要因素。在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了。事后现场测得甲车的刹车距离接近但未超过12m,乙车的刹车距离刚刚超过了10m,又知甲、乙两种车型的刹车距s(m)与车速x(km/h)之间分别有如下关系:
超过了40km/h,谁就违章了。由题意,只需分别解出不等式
确定甲,乙两车的行驶速度,就可以判断哪一辆车违章超速行驶。
二.讲授新课
(一)一元二次不等式的定义:
像上面的形如 的不等式(其中 ),叫做一元二次不等式。
(二)如何解一元二次不等式
A.画出二次函数 的图像.
B.观察图象:
如图:观察函数图象,可知:当 x《-1,或x》3时,函数图象位于x轴上方,此时,y》0,即 ;当-1《0,即 ;
C.一元二次不等式的解集:
一般地,使某个一元二次不等式成立的 的值叫这个一元二次不等式的解。一元二次不等式的所有解组成的集合,叫作这个一元二次不等式的解集。
(三)例题讲解
例1:解不等式:的解
解:方程的两解是 。
函数 的图像与 轴有两个交点(-2,0)和(,0),观察图像可得,不等式的解集为
例2:解不等式: 的解
解:方程 无实数解:
函数 的图像与 轴无交点。
观察图像可得,不等式的解集为R。解不等式: 的解
例3:解不等式
解:方程 有两个相同实数解:
函数 的图像与 轴仅有一个交点( ,0)
观察图像可得,不等式的解集为 。
(四).抽象概括:
通过上面3个例子可知:当 时,解形如 的一元二次不等式,一般可分为三步:
(1) 确定对应方程的解;
(2) 画出对应函数 的图像简图;
(3) 由图像得出不等式的解。
(五)思考交流:
(六)课堂练习
练习1
课本练习2
(七)作业布置
课本习题3-2A组7题(1)(2)(3)(6)

怎么解一元二次不等式详细点

说个问题明确点吧.2X+1=9.
2X=8
X=4...

一元二次不等式怎么解

一元二次不等式的解法
解法一
当△=b²-4ac≥0时,
二次三项式,ax²+bx+c 有两个实根,那么 ax²+bx+c 总可分解为a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。
举例:  
试解一元二次不等式 2x²-7x+6《0
解:
利用十字相乘法
2x  -3
x  -2
得(2x-3)(x-2)《0
然后,分两种情况讨论
:口诀:大于取两边,小于取中间
1) 2x-3《0,x-2》0
得x《1.5且x》2。不成立
2)2x-3》0,x-2《0
得x》1.5且x《2。
得最后不等式的解集为:1.5《x《2。
完毕。
解法二
另外,你也可以用配方法解二次不等式。
如上例题:
2x²-7x+6
=2(x²-3.5x)+6
=2(x²-3.5x+3.0625-3.0625)+6
=2(x²-3.5x+3.0625)-6.125+6
=2(x-1.75)²-0.125《0
2(x-1.75)²《0.125
(x-1.75)²《0.0625
两边开平方,得
x-1.75《0.25 且 x-1.75》-0.25
x《2且x》1.5
得不等式的解集为1.5《x《2
解法三
一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题目所需求的“《0“或“》0“而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。
解法四
数轴穿根:用根轴法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴标根法。口诀是“从右到左,从上到下,奇穿偶不穿。”
●做法::
1.把二次项系数变成正的(不用是1,但是得是正的);
2.画数轴,在数轴上从小到大依次标出所有根;
3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);
4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根。
●例如不等式: x²-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)
⒈分解因式:(x-1)(x-2)≤0;
⒉找方程(x-1)(x-2)=0的根:x=1或x=2;
⒊画数轴,并把根所在的点标上去;
⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;
⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
●高次不等式也一样.比方说一个分解因式之后的不等式:
x(x+2)(x-1)(x-3)》0
一样先找方程x(x+2)(x-1)(x-3)=0的根
x=0,x=1,x=-2,x=3
在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
方程中要求的是》0,
只需要观察曲线在数轴上方的部分所取的x的范围就行了。
x《-2或0《x《1或x》3。
●⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;
⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;
比如对于不等式(X-2)²·(X-3)》0
(X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,
而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。
(3)分子中一定都是能够因式分解成一次式的因式,否则不能用此方法。
2判别方法

解一元二次不等式的步骤

解析如下:

x^2+2x-3≤0

(x+3)(x-1)≤0

x+3≤0且x-1≥0

x≤ -3且x≥1,无解

x+3≥0且x-1≤0

x≥-3且x≤1

所以不等式解集是:-3≤x≤1

二元一次方程一般解法:

消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:

1、代入消元

例:解方程组x+y=5① 6x+13y=89②

解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7

把y=59/7带入③,得x=5-59/7,即x=-24/7

∴x=-24/7,y=59/7

这种解法就是代入消元法。

2、加减消元

例:解方程组x+y=9① x-y=5②

解:①+②,得2x=14,即x=7

把x=7带入①,得7+y=9,解得y=2

∴x=7,y=2

这种解法就是加减消元法。

解一元二次不等式的步骤归纳

1、把二次项系数变成正的;

2、画数轴,在数轴上从小到大依次标出所有根;

3、从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);

4、注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。

扩展资料:

求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。

一元二次不等式解法有公式法、配方法、图像法、数轴穿根。数轴穿根步骤:把二次项系数变成正的;画数轴,在数轴上从小到大依次标出所有根;从右上角开始,一上一下依次穿过不等式的根,奇过偶不过。

如何解一元二次不等式

一元二次不等式解法有以下几种:

1、当-=b3-4ac≥0时,二次三项式,ax2+bx+c有两个实根,那么ax2+bx+c,总可分解为a(x-x1)(x-x2)的形式。这样,解—元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集,就是这两个—元一次不等式组的解集的交集。

2、用配方法解—元二次不等式。

3、通过一元二次函数图象进行求解,二次函数图象与X轴的两个交点,然后根据题目所需求的“《0“或“》0“而推出答案。

4、数轴穿根:用根轴法解高次不等式时,就是先把不等式—端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点。

这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴标根法。

解一元二次不等式的一般步骤5个

解一元二次不等式步骤一般有四个:

1、把二次项系数变成正的;

2、画数轴,在数轴上从小到大依次标出所有根;

3、从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);

4、注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。

扩展资料

数轴穿根法适用于所有的不等式。

用根穿孔法求解高阶不等式时,先将不等式的一端化为零,然后在另一端分解,得到其零点。这些零点标记在数字轴上,然后使用平滑曲线从X轴右端的顶部穿过这些零点。

大于零的不等式解对应于x轴上曲线上部实数x的一组小于零的值。相反地。这种方法被称为序贯轴根部穿孔法,也被称为“根部穿孔法”。口诀是“从右到左,从上到下,奇穿偶不穿。”

参考资料来源:百度百科-一元二次不等式