本文目录
谁来给我讲解一下一元二次不等式的解法
1,先把一元二次不等式变成:x^2+px+q》0或x^2+px+q《0的形式。
2,利用十字相乘法或公式法把一元二次不等式的左边分解,使它变成:(x-a)(x-b)》0或(x-a)(x-b)《0的形式。
3,根据同号得+,异号得-,把一元二次不等式转换为一元一次不等式组,求出一元一次不等式组的解集即为此一元二次不等式的解。具体如下:
(1)当(x-a)(x-b)》0时,则
x-a》0 x-a《0
{ 或 {
x-b》0 x-b《0
(2)当(x-a)(x-b)〈0时,则
x-a》0 x-a《0
{ 或 {
x-b《0 x-b》0
______________________________________
例题:
例1:解一元二次不等式 x^2-3x+2》0
解:(x-1)(x-2)》0,则
x-1》0 x-1《0
{ 或 {
x-2》0 x-2《0
所以此一元二次不等式的解为:x》2或x《1
例2:解一元二次不等式 x^2-5x+6《0
解:(x-2)(x-3)《0,则
x-2》0 x-2《0
{ 或 {
x-3《0 x-3》0
即:2《x《3 或 无解
所以此一元二次不等式的解为:2《x《3
1元2次不等式的解法
解法一 当△=bˆ2-4ac≥0时, 二次三项式,axˆ2+bx+c 有两个实根,那么 axˆ2;+bx+c 总可分解为a(x-x1)(x-x2)的形式。 这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的并集。 举例: 试解一元二次不等式 2xˆ2;-7x+6《0 解: 利用十字相乘法 2x -3 x -2 得(2x-3)(x-2)《0 然后,分两种情况讨论: 1) 2x-3《0,x-2》0 得x《1.5且x》2。不成立 2)2x-3》0,x-2《0 得x》1.5且x《2。 得最后不等式的解集为:1.5《x《2。 完毕。解法二 另外,你也可以用配方法解二次不等式。 如上例题: 2xˆ2;;-7x+6 =2(xˆ2;-3.5x)+6 =2(xˆ2;-3.5x+3.0625-3.0625)+6 =2(xˆ2;-3.5x+3.0625)-6.125+6 =2(x-1.75)ˆ2;-0.125《0 2(x-1.75)ˆ2;《0.125 (x-1.75)ˆ2;《0.0625 两边开平方,得 x-1.75《0.25 且 x-1.75》-0.25 x《2且x》1.5 得不等式的解集为1.5《x《2解法三 一元二次不等式也可通过一元二次函数图象进行求解。 通过看图象可知,二次函数图象与X轴的两个交点,然后根据题目所需求的“《0“或“》0“而推出答案。 求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式左边并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。 数轴穿根:用根轴法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。 ●做法:: 1.把所有X前的系数都变成正的(不用是1,但是得是正的); 2.画数轴,在数轴上从小到大依次标出所有根; 3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍); 4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根。 ●例如不等式: xˆ2;-3x+2≤0(最高次项系数一定要为正,不为正要化成正的) ⒈分解因式:(x-1)(x-2)≤0; ⒉找方程(x-1)(x-2)=0的根:x=1或x=2; ⒊画数轴,并把根所在的点标上去; ⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸; ⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。 ●高次不等式也一样.比方说一个分解因式之后的不等式: x(x+2)(x-1)(x-3)》0 一样先找方程x(x+2)(x-1)(x-3)=0的根 x=0,x=1,x=-2,x=3 在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。 方程中要求的是》0, 只需要观察曲线在数轴上方的部分所取的x的范围就行了。 x《-2或0《x《1或x》3。 ●⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来; ⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数; 比如对于不等式(X-2)ˆ2;·(X-3)》0 (X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点, 而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。本段判别方法 (以下仅考虑a》0的情况,a《0可类推) 判别式△》0时,如前所述。(有两个不相等的解) 判别式△=0时,因为a》0,二次函数图象抛物线的开口向上,抛物线与x轴有一个交点,则x1=x2,所以不等式ax^2+bx+c》0的解集是x≠x1的全体实数,而不等式ax^2+bx+c《0的解集是空集。(有一个解 即x≠a) 判别式△《0时,抛物线在x轴的上方与x轴没有交点。所以不等式ax^2+bx+c》0的解集是全体实数,而不等式ax^2+bx+c《0的解是空集。(没有解) 以下为a《0的情况: 判别式△》0时,如前所述。(有两个不相等的解) 判别式△=0时,因为a《0,二次函数图象抛物线的开口向下,抛物线与x轴有一个交点,则x1=x2,所以不等式ax^2+bx+c《0的解集是x≠x1的全体实数,而不等式ax^2+bx+c》0的解集是空集。(有一个解 即x≠a) 判别式△《0时,抛物线在x轴的下方与x轴没有交点。所以不等式ax^2+bx+c《0的解集是全体实数,而不等式ax^2+bx+c》0的解是空集。(没有解)
建议:楼主要用心学习这一部分。因为日后的导数题对于含参一个二元二次不等式的要求很高!
我就是因此而在今年高考中吃了大亏!
解一元二次不等式的过程有哪些方法 求举例
解法一
当△=b²-4ac≥0时,
一元二次方程ax²+bx+c=0 有两个实根,那么ax²+bx+c可分解为如a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。
举例:
试解一元二次不等式
解:
利用十字相乘法:
2x -3
x -2
得(2x-3)(x-2)《0
然后,分两种情况讨论。
口诀同一元一次不等式的“数轴法”:大大取大,小小取小;大小小大取中间,小小大大没有解。
1) 2x-3《0,x-2》0
得x《1.5且x》2(不成立)
2)2x-3》0,x-2《0
得x》1.5且x《2。
得最终不等式的解集为:
解法二
此外,亦可用配方法解一元二次不等式。
如上例题中:
2x²-7x+6
=2(x²-3.5x)+6
=2(x²-3.5x+3.0625-3.0625)+6
=2(x²-3.5x+3.0625)-6.125+6
=2(x-1.75)²-0.125《0
2(x-1.75)²《0.125
(x-1.75)²《0.0625
两边开平方,得:x-1.75《0.25且x-1.75》-0.25
x《2且x》1.5
得不等式的解集为
解法三
一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题中所需求“《0“或“》0“而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图象法进行解题,使得问题简化。
解法四
数轴穿根:用穿根法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴穿根法,又叫“穿根法”。口诀是“从右到左,从上到下,奇穿偶不穿。”
●做法::
1.把二次项系数变成正的(不用是1,但是得出者为正解);
2.画数轴,在数轴上从小到大依次标出所有根;
3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过
(即遇到含X的项是奇次幂就穿过,偶次幂就跨过。后文有详细介绍);
4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根。
●例如不等式: x²-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)
⒈分解因式:(x-1)(x-2)≤0;
⒉找方程(x-1)(x-2)=0的根:x=1或x=2;
⒊画数轴,并把根所在的点标上去;
⒋注意,此时从最右端开始,从2的右上方引出一条曲线,经过点2,继续向左绘制,类似于抛物线,再经过点1,向点1的左上方无限延伸;
⒌看题求解,题中要求求≤0的解,那么只需在数轴上观察哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
●高次不等式亦如.。例如一个分解因式后所得之不等式:
x(x+2)(x-1)(x-3)》0
照例,先找方程x(x+2)(x-1)(x-3)=0的根:
x=0,x=1,x=-2,x=3
在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
方程中要求的是》0,
只需观察曲线在数轴上方的部分所取的x的范围即可。
x《-2或0《x《1或x》3。
●⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;
⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;
比如对于不等式(X-2)²·(X-3)》0
(X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,
而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。
(3)分子中一定都是能够因式分解成一次式的因式,否则不能用此方法。