本文目录
- 初一的一元一次不等式组的计算题及答案100道
- 简单的一元一次不等式组的题 要答案
- 一元一次不等式组计算题(附过程及答案)
- 含括号或含分母的一元一次不等式组计算题及答案(100道)
- 求100道一元一次不等式计算题带答案,和50道初二应用题带答案,不要太难哦,被采纳者留下QQ,10Q币哦
- 一元一次不等式组100道及答案
- 求一元一次不等式组的计算题100道(带答案)
初一的一元一次不等式组的计算题及答案100道
如图:
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组(System of Linear Inequalities in One Variable)。不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
由一元一次不等式组的定义可知一个一元一次不等式组的几个不等式必须符合三个条件:(1)这里的几个可以是两个、三个、…;(2)每个不等式都是一元一次不等式;(3)必须都含有同一个未知数。
步骤:
(1)解不等式组:求不等式组解集的过程叫做解不等式组。
(2)解一元一次不等式组的一般步骤:
第一步:分别求出不等式组中各不等式的解集。
第二步:将各不等式的解集在数轴上表示出来。
第三步:在数轴上找出各不等式的解集的公共部分,这个公共部分就是不等式组的解集。
简单的一元一次不等式组的题 要答案
1、5\7x+2\3《x+12\21
2、4(x 2)>2(3x + 5)
3、以知关于x,y的方程组3x+y=k+1,x+3y=3 ,若0《x+y《1,求整数k的值.
4、当2(a-3)《(10-a)/3时,求关于x的不等式a(x-5)/4》x-a的解集。
5、两位老师准备带领着若干名学生外出旅游,甲乙两家旅行社报价都是100元/人,且都表示提供优惠:甲旅行社对老师和学生一律七折,乙旅行社对老师全价,学生5折收费,选择哪家旅行社合算
6、m为何值时,方程组( 6x+2y=2m+1 4x+3y=11-m)的解x、y都是正数
7、K取何值时,关于X的方程3x-3k=5(x+k)+2的解是正数?
8、3x 》 2x+1
9、 -2x+3 》-3x+1
10、 3x-2(x+1)》0
11、已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围
12、某地气象资料表明,山下的平均气温为22摄适度,从山脚下起,每升高1000米,气温就下降6摄适度,要在山上种一种平均气温是18至20摄适度下生长的植物,那么植物应种在山脚下的什么地方?
13、
2X+3>0
-3X+5>0
2X<-1
X+2>0
5X+6<3X
8-7X>4-5X
2(1+X)>3(X-7)
4(2X-3)>5(X+2)
2X<4
X+3>0
1-X>0
X+2<0
5+2X>3
X+2<8
2X+4<0
1/2(X+8)-2>0
5X-2≥3(X+1)
1/2X+1>3/2X-3
1+1/2X>2
2(X-3)≤4
5x-1>12
判断题
1.已知关于X的不等式组:X-A≥0 的整数解共有5个,则A的取值范围是
3-2X>-1 ( ).
2.若不等式组2X-A<1 的解集为-1<X<1,那么(A+1)(B-1)的值等于
X-2B>3 ( ).
3.当A>0,B>0时,不等式组 X<A 的解集为X<-B( ).
2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.
3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.
4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.
5.已知方程组
有解,求k的值.
6.解方程2|x+1|+|x-3|=6.
7.解方程组
8.解不等式||x+3|-|x-1||>2.
9.比较下面两个数的大小:
10.x,y,z均是非负实数,且满足:
x+3y+2z=3,3x+3y+z=4,
求u=3x-2y+4z的最大值与最小值.
11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.
12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短?
13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.
14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE.
15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB.
16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求
17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.
18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.
19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.
20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?
21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).
22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有
23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?
24.求不定方程49x-56y+14z=35的整数解.
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围.
目前找了这些,300道的话实在太多了,时间不够,以上估计也有250道了吧,帮帮忙给分吧,谢谢
一元一次不等式组计算题(附过程及答案)
不等式组: 1、一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7650平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。)
2、在容器里有18摄示度的水6立方米,现在要把8立方米的水注入里面,使容器里混合的水的温度不低于30摄示度,且不高于36摄示度,求注入的8立方米的水的温度应该在什么范围?
3、有红、白颜色的球若干个,已知白球的个数比红球少,但白球的两倍比红球多,若把每一个白球都记作数2,每一个红球都记作数3,则总数为60,求白球和红球各几个?
4、一次考试共有25道选择题,做对一题得4分,做错一题减2分,不做得0分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?
5、某公司需刻录一批光盘(总数不超过100张),若请专业公司刻录,每张需10元(包括空白光盘费);若公司自刻,除设备租用费200元以外,每张还需成本5元(空白光盘费)。问刻录这批光盘,是请专家公司刻录费用省,还是自刻费用省?
7、某宾馆一楼客房比二楼少5间,某旅游团有48人,若全部安排在一楼,每间4人,房间不够,每间5人,房间没有住满;若安排住在二楼,每间3人房间不够,每间4人,有房间没住满,问宾馆一楼有客房几间
8把一些书分给几个学生,如果每人分3本,那么余8本;
如果前面的每个学生分5本,那么最后一人就分不到3本.
请问这些书有多少本?学生有多少人
9.幼儿园几个小孩分一箱苹果,如果每人分3个,那么余7个;如果每人分5个,那么有1人分得得苹果不足5个,问有多少小孩?多少苹果
10小放家每月水费不少于15元,自来水公司规定:若每户每月用水不超过5立方米,则每立方米收1、8元,若每户每月用水超过5立方米,则超出部分每立方米2元,小放家用水至少是多少
11甲乙两队开展足球比赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共赛了10场,甲队保持不败记录,得分超过了22分,问甲队至少胜了多少场?
12用每分时间可抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;
如果用B型抽水机,估计20分至22分可以抽完.B型抽水机比A型抽
水机每分钟约多抽多少吨水?
13.学校排球比赛,4个班在同组中进行单循环赛,成绩最差的被淘汰,如果排在最后的几个班胜负场数相等,那他们将再进行附加赛.初一(1)班在比赛中至少能胜一场,这个班是否可以确保在附加赛之前不被淘汰?是否一定出线?为什么?
14用若干辆重量为8吨的汽车运一批货物,若每辆车之装4吨,则剩下20吨货物;若没亮着装满8吨,则最后一辆车不满也不空,问:有多少辆车?
15某城市的出租车起步价为10元(既行驶距离在5千米以内都需付10元费),达到或超过5千米后,每行驶1千米价1.2元(不做一千米也按1千米计).现在某人乘车从甲地到乙地,支付车费17.2元,问从甲地到乙地的路程大约是多少?
16初二年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租一辆,且有一辆车每有座满,但超过一半.一直租用48座客车每辆250元,租用64座客车每辆300元,问应租用哪种客车较合算?
17 把一篮苹果分给几个学生,如果每人分4个,则剩下3个;如果每人分6个,则最后一个学生最多得2个.求学生人数和苹果数.
18某宾馆一楼客房比二楼少5间,某旅游团48人,若安排住一楼,每间住4人,房间不够;每间住5人,有房间没有住满5人;又若全安排住二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆一楼有客房多少间?
19 将若干只鸡放入若干个笼,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,那么至少有几只鸡几个笼?
20甲、乙两车间各有若干个工人生产同一种零件,甲车间有1个人每天生产6件,其余每人每天生产11件;乙车间有1人每天生产7件,其余每人每天生产10件.已知两车间每天生产零件的总数相等,且每个车间每天生产零件总数不少于100件也不超过200件,则甲车间有多少人,乙车间有多少人?
方程:1某校加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套 ?
2 3辆小货车和6辆卡车一次能运货物32吨,10辆小货车和3辆卡车一次能运货物28吨,1辆小货车和1辆卡车一次各运货物多少吨 ?
3 有大小两种货车,2辆大车和3辆小车一次可以运货15.5吨,5辆大车和6辆小车一次可以运货35吨,求3辆大车和5辆小车一次可以运货多少吨 ?
4 革命老区某芒果种植基地,去年结余为500万元,估计今年可结余980万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元 ?
5 电脑公司为了扩大经营规模,向银行申请了甲 ,乙两种贷款,共计300万元,每年需付利息为21.3万元. 已知甲种贷款每年的年利率为7.2%,乙种贷款每年的年利率为6.9%,那么该厂甲,乙两种贷款的数额各是多少 ?
6 小明以两种方式储蓄了压岁钱2000元,其中一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%但要扣除20%的利息所得税的一年期定期存款,一年后共得到利息42.75元,求这两种储蓄各存了多少钱 ?
7 某商场购进商品后,加价40%作为销售价,商场搞优惠促销,决定甲,乙两种商品分别7折和9折销售,某顾客购买甲乙两种商品,共付款399元,这两种商品原销售价之和为490元,问这两种商品进价分别为多少元 ?
8 有一个两位数,十位上的数比个位上的数小1,十位上的数与个位上的数的和是这个两位数的1/5,求这个两位数.
9 一个三位数的个位数字是7,十位数字与百位数字之和为3,若把个位数字移到首位,则新数比原数的5倍还多77,求这个三位数.
10 甲,乙两队合做一项工程,12天可以完成, 如果甲先做5天后,乙才赶来参加,两人合做9天才能完成,则甲,乙独做各需要多少天完成这项工程 ?
11 甲乙两人骑自行车从相距34.5KM的两地相向出发,在甲走了1.5H,乙走了2 H后相遇; 第二次他们同时从两地相向出发,经过5/4H,两个还相距9.5KM,求甲,乙两人骑自行车的速度.
12 A,B两地相距20KM,甲从A地向B地前进,同时乙从B地向A地前进,2 H后二人在途中相遇, 相遇后甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2KM,求甲,乙二人的速度
13有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两
种债券各有多少?(6分)
14 一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。3种包装的饮料每瓶各多少元?(6分)
15 牟班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离。(6分)
16甲乙两工厂计划一年共生产机床360台,实际上甲厂完成了计划的112%,乙厂完成了计划的110%,实际两厂生产机床400台,求甲、乙两厂计划生产机床多少台?
17两个缸内一共有48桶水,若用甲缸的水给乙缸加水一倍,然后又用乙缸的水给甲缸加入甲缸剩余水的一倍,则甲、乙两缸的水量相符,求最初甲、乙两缸内各有多少桶水?
18甲乙两人已不变的速度在环行路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快。求甲乙每分钟跑多少圈?
19“迎春杯”数学竞赛共有10道题,小明得了77分,并且每道题都做了,但他觉得分数与他的自我评估有点小差距,已知每道题10分,不做扣10分,若做对一部分可得3分,现在请你帮他估算一下,小明的实际得分情况如何?
20某作业组要在规定时间内完成一项工程,如果增加2名工人,那么可提前2天完成;如果减少3名工人,就要推迟6天完成,问:这个作业组原有多少人?规定完成工作的时间是多少天?
含括号或含分母的一元一次不等式组计算题及答案(100道)
不等式组:
1、2X+3>0。
-3X+5>0。
2、2X<-1。
X+2>0。
3、5X+6<3X。
8-7X>4-5X。
4、2(16531+X)>3(X-7)。
4(2X-3)>5(X+2)。
5、2X<4。
扩展资料
一般步骤具体操作:
(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
求100道一元一次不等式计算题带答案,和50道初二应用题带答案,不要太难哦,被采纳者留下QQ,10Q币哦
1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?
设慢车开出a小时后与快车相遇
50a+75(a-1)=275
50a+75a-75=275
125a=350
a=2.8小时
2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲 乙两地距离。
设原定时间为a小时
45分钟=3/4小时
根据题意
40a=40×3+(40-10)×(a-3+3/4)
40a=120+30a-67.5
10a=52.5
a=5.25=5又1/4小时=21/4小时
所以甲乙距离40×21/4=210千米
3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,则甲队剩下的人数比乙队的人数的 一半少3人,求甲乙两队原来的人数?
解:设乙队原来有a人,甲队有2a人
那么根据题意
2a-16=1/2×(a+16)-3
4a-32=a+16-6
3a=42
a=14
那么乙队原来有14人,甲队原来有14×2=28人
现在乙队有14+16=30人,甲队有28-16=12人
4、已知某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份 的月增长率。
解:设四月份的利润为x
则x*(1+10%)=13.2
所以x=12
设3月份的增长率为y
则10*(1+y)=x
y=0.2=20%
所以3月份的增长率为20%
5、某校为寄宿学生安排宿舍,如果每间宿舍住7人,呢么有6人无法安排。如果每间宿舍住8人,那么有一间只住了4人,且还空着5见宿舍。求有多少人?
解:设有a间,总人数7a+6人
7a+6=8(a-5-1)+4
7a+6=8a-44
a=50
有人=7×50+6=356人
6、一千克的花生可以炸0.56千克花生油,那么280千克可以炸几多花生油?
按比例解决
设可以炸a千克花生油
1:0.56=280:a
a=280×0.56=156.8千克
完整算式:280÷1×0.56=156.8千克
7、一批书本分给一班每人10本,分给二班每人15本,现均分给两个班,每人几本?
解:设总的书有a本
一班人数=a/10
二班人数=a/15
那么均分给2班,每人a/(a/10+a/15)=10×15/(10+15)=150/25=6本
8、六一中队的植树小队去植树,如果每人植树5棵,还剩下14棵树苗,如果每人植树7棵,就少6棵树苗。这个小队有多少人?一共有多少棵树苗?
解:设有a人
5a+14=7a-6
2a=20
a=10
一共有10人
有树苗5×10+14=64棵
9、一桶油连油带筒重50kg,第一次倒出豆油的的一半少四千克,第二次倒出余下的四分之三多二又三分之二kg,这时连油带桶共重三分之一kg,原来桶中有多少油?
解:设油重a千克
那么桶重50-a千克
第一次倒出1/2a-4千克,还剩下1/2a+4千克
第二次倒出3/4×(1/2a+4)+8/3=3/8a+17/3千克,还剩下1/2a+4-3/8a-17/3=1/8a-5/3千克油
根据题意
1/8a-5/3+50-a=1/3
48=7/8a
a=384/7千克
原来有油384/7千克
10、用一捆96米的布为六年级某个班的学生做衣服,做15套用了33米布,照这样计算,这些布为哪个班做校服最合适?(1班42人,2班43人,3班45人)
设96米为a个人做
根据题意
96:a=33:15
33a=96×15
a≈43.6
所以为2班做合适,有富余,但是富余不多,为3班做就不够了
11、一个分数,如果分子加上123,分母减去163,那么新分数约分后是3/4;如果分子加上73,分母加上37,那么新分数约分后是1/2,求原分数。
解:设原分数分子加上123,分母减去163后为3a/4a
根据题意
(3a-123+73)/(4a+163+37)=1/2
6a-100=4a+200
2a=300
a=150
那么原分数=(3×150-123)/(4×150+163)=327/763
12、水果店运进一批水果,第一天卖了60千克,正好是第二天卖的三分之二,两天共卖全部水果的四分之一,这批水果原有多少千克(用方程解)
设水果原来有a千克
60+60/(2/3)=1/4a
60+90=1/4a
1/4a=150
a=600千克
水果原来有600千克
13、仓库有一批货物,运出五分之三后,这时仓库里又运进20吨,此时的货物正好是原来的二分之一,仓库原来有多少吨?(用方程解)
设原来有a吨
a×(1-3/5)+20=1/2a
0.4a+20=0.5a
0.1a=20
a=200
原来有200吨
14、王大叔用48米长的篱笆靠墙围一块长方形菜地。这个长方形的长和宽的比是5:2。这块菜地的面积是多少?
解:设长可宽分别为5a米,2a米
根据题意
5a+2a×2=48(此时用墙作为宽)
9a=48
a=16/3
长=80/3米
宽=32/3米
面积=80/3×16/3=1280/9平方米
或
5a×2+2a=48
12a=48
a=4
长=20米
宽=8米
面积=20×8=160平方米
15、某市移动电话有以下两种计费方法:
第一种:每月付22元月租费,然后美分钟收取通话费0.2元。
第二种:不收月租费 每分钟收取通话费0.4元。
如果每月通话80分钟 哪种计费方式便宜?如果每月通话300分钟,又是哪种计费方式便宜呢??
设每月通话a分钟
当两种收费相同时
22+0.2a=0.4a
0.2a=22
a=110
所以就是说当通话110分钟时二者收费一样
通话80分钟时,用第二种22+0.2×80=38》0.4×80=32
通过300分钟时,用第一种22+0.2×300=82《0.4×300=120
16、某家具厂有60名工人,加工某种由一个桌面和四条桌腿的桌子,工人每天美人可以加工3个桌面或6个桌腿。怎么分配加工桌面和桌腿的人数,才能使每天生产的桌面和桌腿配套?
设a个工人加工桌面,则加工桌腿的工人有你60-a人
3a=(60-a)×6/4
12a=360-6a
18a=360
a=20
20人加工桌面,60-20=40人加工桌腿
17、一架飞机在2个城市之间飞行,风速为每时24km,顺风飞行要17/6时,逆风飞要3时,求两城市距离
设距离为a千米
a/(17/6)-24=a/3+24
6a/17-a/3=48
a=2448千米
18、A.B两地相距12千米,甲从A地到B地停留30分钟后,又从B地返回A地。乙从B地到A地,在A地停留40分钟后,又从A地返回B地。已知两人同时分别从A B两地出发,经过4小时。在他们各自的返回路上相遇,如甲的速度比乙的速度每小时快1.5千米,求两人速度?
设乙的速度为a千米/小时,则甲的速度为a+1.5千米/小时
30分钟=1/2小时,40分钟=2/3小时
(4-2/3)a+(a+1.5)×(4-1/2)=12×3
10/3a+7/2a+21/4=36
41/6a=123/4
a=4.5千米/小时
甲的速度为4.5+1.5=6千米/小时
19、甲乙两人分别从相距7千米的AB两地出发同向前往C地,凌晨6点乙徒步从B地出发,甲骑自行车在早晨6点15分从A地出发追赶乙,速度是乙的1.5倍,在上午8时45分追上乙,求甲骑自行车的速度是多少。
解:设乙的速度为a千米/小时,甲的速度为1.5a千米/小时
15分=1/4小时,6点15分到8点45分是5/2小时
距离差=7+1/4a
追及时间= 5/2小时
(1.5a-a)×5/2=7+1/4a
5/4a=7+1/4a
a=7千米/小时
甲的速度为7×1.5=10.5千米/小时
20、在一块长为40米,宽为30米的长方形空地上,修建两个底部是长方形且底部面积为198平方米的小楼房,其余部分成硬化路面,若要求这些硬化路面的宽相等,求硬化路面的宽?
设硬化路面为a米
40a×2+(30-2a)×a×3=40×30-198×2
80a+90a-6a²=804
3a²-85a+402=0
(3a-67)(a-6)=0
a=67/3(舍去),a=6
所以路宽为6米
因为3a《40
a《40/3
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
解:1、水面年租金=500元
苗种费用=75x4+15x20=300+300=600元
饲养费=525x4+85x20=2100+1700=3800元
成本=500+600+3800=4900元
收益1400x4+160x20=5600+3200=8800元
利润(每亩的年利润)=8800-4900=3900元
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a》0(1)
0《5a+5《35(2)
0《5a+5-《8(3)
由(2)得
-5《5a《30
-1《a《6
由(3)
0《5a+5-8a+16《8
-21《-3a《-13
13/3《a《7
由此我们确定a的取值范围
4又1/3《a《6
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表:
型号 占地面积(平方米/个) 使用农户数(户/个) 造价(万元/个)
A 15 18 2
B 20 30 3
已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.
(1).满足条件的方法有几种?写出解答过程.
(2).通过计算判断哪种建造方案最省钱?
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个
18x+30(20-x) ≥492
18x+600-30x≥492
12x≤108
x≤9
15x+20(20-x)≤365
15x+400-20x≤365
5x≥35
x≤7
解得:7≤ x ≤ 9
∵ x为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60
∵-1《 0,∴y 随x 增大而减小,
当x=9 时,y的值最小,此时y= 51( 万元 )
∴此时方案为:建造A型沼气池9个,建造B型沼气池11个
解法②:由(1)知共有三种方案,其费用分别为:
方案一: 建造A型沼气池7个, 建造B型沼气池13个,
总费用为:7×2 + 13×3 = 53( 万元 )
方案二: 建造A型沼气池8个, 建造B型沼气池12个,
总费用为:8×2 + 12×3 = 52( 万元 )
方案三: 建造A型沼气池9个, 建造B型沼气池11个,
总费用为:9×2 + 11×3 = 51( 万元 )
∴方案三最省钱.
八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个?
解:设学生有a人
根据题意
3a+8-5(a-1)《3(1)
3a+8-5(a-1)》0(2)
由(1)
3a+8-5a+5《3
2a》10
a》5
由(2)
3a+8-5a+5》0
2a《13
a《6.5
那么a的取值范围为5《a《6.5
那么a=6
有6个学生,书有3×6+8=26本
九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×80%(1)
28a+20(80-a)≤2400×85%(2)
由(1)
28a+1600-20a≥1920
8a≥320
a≥40
由(2)
28a+1600-20a≤2040
8a≤440
a≤55
40≤a≤55
方案: A B
40 40
41 39
……
55 25
一共是55-40+1=16种方案
十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?
设需要买x(x≥10)把椅子,需要花费的总前数为y
第一种方案:
y=300x5+60×(x-10)=1500+60x-600=900+60x
第二种方案:
y=(300x5+60x)×87.5%=1312.5+52.5x
若两种方案花钱数相等时
900+60x=1312.5+52.5x
7.5x=412.5
x=55
当买55把椅子时,两种方案花钱数相等
大于55把时,选择第二种方案
小于55把时,选择第一种方案
1)2X-4≤X+2 与 X≥3 解集为3≤X≤6 (2)2X-1>1 与 4-2X≤0 解集为无解 (3)3X+2>5 与 5-2≥1 解集为1<X≤2 (4)X﹣1<2 与 2X+3>2+X 解集为-1<X<3 (5)X+3>1 与 X﹢2(X-1)≤1 解集为-2<X≤1 (6)2X+1≤3 与 X>-3 解集为1≤X>-3 (7)2X+5>1 与 3X+7X≤10 解集为1≥X>2 (8)2X-1>X+1 与 X+8<4X-1 解集为X>3
(9)1-2(X-1)≤5与2/(3X-2)<X+1/2解集为-1≤X<3 (10)2X≤4+X 与 X+2<4X-1解集为1<X≤4
(11)2-X>0 与 2/(5X+1)+1≥3/(2X-1) 解集为-1≤X<2
(12)1-X<0 与 2/(X-2)<1 解集为1<X<4 (13)2-X<3 与 2-X≥0 解集为2≥X>1 (14)2X+10>-5 与 6X-7≥10 解集为X>17/6 (15)6X+6>8 与 3X+10<5 解集为-(3/5)>X>-3 (16)6X+6X24 与 10X+(1/2)X<-42 解集为无解 (17)24X-20X>4 与 8X+4X≤24解集为2≥X>1 (18)9X-5X<8 与 15X+5X>80 解集为无解
(19)X+X≤1 与 2X+(1/2)X>100 解集为无解 (20)2011X-2012X≤1 与 2013X-2012X≥1 解集为1≤X (21)4X-X>6 与 10X+5X<15 解集为无解
(22)-5X-6X≤-22 与 5X-9X≥24 解集为无解 (23)(1/5)X+(1/5)X>2/5 与 X+10X>22 解集为X>2 (24)55X+55X<220 与 66X+10X<38 解集为X<1/2 (25)70X+1≤71 与 53X-13X≤40 解集为X≤1 (26)X+1<7 与 X-1>10 解集为无解
(27)5X+5>5 与 2X+3X>9 解集为X>9/5 (28)85X-5X<8 与 50X+30X<5 解集为X<1/16 (29)2X≤14 与 6X<6 解集为X<1
(30)15X+15≥30 与 6X-8X≥4 解集为-2≥X≥1
(31)2X≥160 与 4X≥316 解集为X≥80 (32)35X-27X>136 与 20X+20X<800解集为20>X>17
(33)55X≤165 与 56X>112 解集为2<X≤3 (34)20X+18X≥76 与 2X≥2 解集为X≥2
(35)59X+X>600 与 55X+35X<1350 解集为10<X<15 (36)60X<120 与 5X+5X<10 解集为X<1
(37)100X<20X+1200 与 2X<30X+10 解集为X<5/14
(38)50X≥100 与 50X≥50 解集为X≥1
(39)25X>250 与 26X>26 解集为X>10 (40)2X>2 与 3X<-5 解集为无解
一元一次不等式组100道及答案
3x(x+5)>3x2+7
x-4 《 2x+1
3x+14 》 4(2x-9)
3x-7≥4x-4
2x-3x-3<6
0.4(x-1)≥0.3-0.9x
x-4 《 2x+1
2x-6 《 x-2
3×10x98
2x-3x+3<6
2x-3x+1<6
2x-3x+3<1
2x-19<7x+31
3x-2(9-x)>3(7+2x)-(11-6x)
2(3x-1)-3(4x+5)≤x-4(x-7)
2(x-1)-x>3(x-1)-3x-5
15-(7+5x)≤2x+(5-3x)
2X+3>0
-3X+5>0
5X+6<3X
4(2X-3)>5(X+2)
2X+4<0
求一元一次不等式组的计算题100道(带答案)
别人给你的,也是百度出来的,为什么自己不先百度一下?
不等式组
1、2X+3>0
-3X+5>0
2、2X<-1
X+2>0
3、5X+6<3X
8-7X>4-5X
4、2(1+X)>3(X-7)
4(2X-3)>5(X+2)
5、2X<4
X+3>0
6、1-X>0
X+2<0
7、5+2X>3
X+2<8
8、2X+4<0
1/2(X+8)-2>0
9、5X-2≥3(X+1)
1/2X+1>3/2X-3
10、1+1/2X>2
2(X-3)≤4
x+3》-1
4x》-12
3(2x+5)》2(4x+3)
10_4(x-4)《2(X-1)
5x+1/6-2》x-5/4
2x+5《10