本文目录
陈祖煜的学术生涯
陈祖煜生于1943年2月。1960年在上海向明中学完成了高中学业,同年考入了清华大学,1966年毕业于清华大学水利系。毕业后,曾有十余年在水利水电的第一线从事地基处理和水库的设计、施工工作。在此期间曾荣获“北京市科技先进工作者”称号。1979年作为我国第一批访问学者赴加拿大Alberta大学进修,从师于著名的土力学专家Morgenstern教授。在两年的留学生活中,他旁听了土木系岩土专业的全部研究生课程,同时开展研究工作。1981年返回祖国,在中国水利水电科学研究院工作。
陈祖煜早期的工作是在理论和分析计算方法两个方面完善了边坡稳定分析领域中著名的Morgenstern-Price法。其主要贡献为对这一方法的数学力学表达和理论内涵做出了重要改进,给出了力和力矩平衡方程式的解析解,并根据剪应力成对原理提出了求解该方程所必需的边界条件。用严格的解析方法推导出土体力和力矩平衡微分方程式,并获得闭合解;推导了用牛顿法求解力和力矩平衡方程所需的各项导数的计算公式,解决了各种稳定分析严格方法长期未能解决的数值计算收敛困难的问题;提出对土条侧向力的假定必须满足的边界条件,以保证剪应力成对的原理不受破坏,以此全面改进了在边坡稳定分析领域中具有重要学术地位的Morgenstern-Price法。1983年,在Morgenstern-Price法发表以后的18年,一个以Chen和Morgenstern署名的新方法出现在加拿大岩土工程学报,这一新的完善的方法引起了国际土力学界的重视。并已于2003年纳入“碾压式土石坝设计规范”(SL272-2001)。 回国后,陈祖煜继续开展边坡稳定分析研究工作,在加拿大岩土工程学报上发表两篇论文,提出确定临界滑裂面的数值方法。在使用非直接搜索法即牛顿法进行最优化方法计算时,提出对海色矩阵负阵的迭代初值不同于常规方法的处理,解决了牛顿法在边坡分析中的收敛问题。第一次提出通过随机搜索和最优化方法结合的途径确定最小安全系数,有效地解决了在自由度较多的情况下无法找到整体极值的问题。
1998年,陈祖煜将改进后的Morgenstern-Price法推广到主动土压力领域,克服了传统的库仑主动土压力理论不适用于柔性支挡结构(如锚拉、支撑、悬臂墙)的缺点,实现了土力学创始人Terzaghi教授提出的通过引入力矩平衡条件建立统一的主动土压力分析方法的构想。论文发表于加拿大岩土工程学报。
二十一世纪初,陈祖煜的研究工作又实现了新的突破。他与他的合作者将上述从二维推广到三维。分别在加拿大岩土工程学报和国际岩石力学与采矿工程学报上发表了相应的研究成果。
岩质边坡最危险滑裂面的GA-Sarma 算法
5.3.1 边坡危险滑裂面研究概述
边坡稳定性分析方法中极限平衡法是工程评价和设计中最主要的也是最有效的实用分析方法,并为国家规范所采用。但是极限平衡法的最大困难在于很难找出对应于最小稳定性系数的临界滑动面(朱大勇,1997)。通常确定边坡最小稳定性系数包括两个步骤,首先对边坡体内某一滑裂面按一定计算方法确定其稳定性系数,然后在所有可能的滑裂面中找出安全系数最小的临界滑裂面,如果滑裂面曲线为函数y(x),则问题具体化为泛函F=F(y)的极值(陈祖煜,2003)。由于岩土边坡的几何形状各异,材料具有非均质性,纯解析的变分原理很难进行极值计算。
近几十年来,众多学者开展了基于最优化方法的稳定性系数极值的计算研究,具体的方法包括解析法(如负梯度法、DFP法等)、直接搜索法(枚举法、单形法、复形法、模式搜索法、共轭梯度法等)、人工智能方法(模拟退火法、遗传算法、神经网络法、蚁群算法等)。在二维垂直条分法领域,稳定性系数最小的临界滑动面的搜索问题已经得到了很好的解决,无论是圆弧还是任意状滑裂面,而进入斜条分法和三维领域,由于自由度的增加,优化算法面临着严峻的挑战(陈祖煜等,2005)。总体看来,边坡稳定性系数极值的优化算法呈现从解析法、直接搜索法向人工智能方法过渡的趋势。
以“岩体结构控制论”的观点来看,岩质边坡的稳定性主要受断层破碎带、软弱夹层、岩层层面、节理面等不连续结构面的控制,因此在稳定性计算中应充分考虑这些不连续面的分布情况和力学强度性状。Sarma法满足滑体条块间的力平衡条件,可任意条分,并考虑临界地震加速度,适用于任意形状滑面,在岩质边坡稳定性分析中运用最为广泛,本书拟以Sarma法为稳定性计算方法,在潜在滑移体的条块划分时考虑岩层层面等结构面,滑裂面为折线性形态的基础上探索岩质边坡最危险滑裂面优化和最小稳定性系数的计算问题。遗传算法(Genetic Algorithms,GA)使用自适应概率寻优,在解决多参数的全局优化中具有更高的效率,因此运用遗传算法来解决这一问题,由此提出了岩质边坡最危险滑裂面全局优化的GA-Sarma算法。
5.3.2 遗传算法理论基础
遗传算法由美国密歇根大学的Holland教授(1975)年在《自然系统与人工系统中的适应性》一书中正式提出其概念和理论框架,此后吸引了众多的研究者和探索者,相继发展和深化了该算法,其中伊利诺大学的Goldberg(1989)以专著形式对遗传算法理论及其领域的应用进行了较为全面的分析和例证。遗传算法提供了一种求解复杂系统优化问题的通用框架,广泛应用于组合优化、机器学习、自适应控制、规划设计、图像处理和模式识别、人工生命等领域。
遗传算法是借鉴生物的自然选择和遗传进化机制而开发出来的一种全局优化自适应概率搜索算法。它使用群体搜索技术,通过对当前群体施加选择、交叉、变异等一系列遗传操作,产生新一代的群体,并逐步使群体进化到包含或接近最优解的状态。它的主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息,它尤其适用于处理传统搜索方法难于解决的整体极值和非线性问题的求解。
遗传算法是在给定初始群体和遗传操作的前提下,通过迭代实现群体的进化,它包括三个基本操作:选择、交叉和变异(许国志等,2000)。候选解(目标函数)是模拟生物体的染色体,对待求问题编码而形成,组成一个固定规模的群体。最初候选解的群体是随机生成的,每一个染色体代表给定优化问题的一个可能的解,组成染色体的每一个基因代表一个待优化的参数。使用目标函数可计算一个染色体对应的目标函数值(稳定性系数),进而可以确定每一个染色体的适应度(稳定性系数的函数)。染色体通过迭代而进化,每一个迭代步骤中,父代群体中的两个染色体相互结合(交叉操作)或直接改变父代群体中的某个染色体(变异操作)形成子代群体中染色体。从父代和子代中选择某些适应度大的染色体而淘汰适应度小的染色体(选择操作),可以形成新一代的染色体。适应度最大(稳定性系数最小)的染色体,最有可能被选择并用于产生下一代染色体,这一迭代过程直到寻找到最优解为止(陈祖煜,2003)。遗传算法的流程(王小平等,2000)如图5.3.1所示。
图5.3.1 遗传算法的基本流程
遗传算法在边坡稳定性分析领域已得到运用并备受关注。如肖传文等(1998)应用遗传算法进行Bishop圆弧滑裂面的优化分析,Goh(1999)运用遗传算法进行斜条分法临界滑动模式的搜索,张宏亮等(2003)应用上限解斜条分法和遗传算法确定边坡的最小稳定性系数,陈昌富等(2003)基于水平条分法和遗传算法计算水平向成层边坡在地震作用下的稳定性,何则干等(2004)利用遗传模拟退火算法结合瑞典圆弧法寻找边坡最危险滑裂面,吕文杰等(2005)用遗传算法配合单纯形法优化提出边坡圆弧滑动稳定分析通用算法。这些研究提出了一些好的思路,并取得了满意的结果,但算法或基于圆弧滑动假设,或未能充分考虑岩体结构面的控制,现在仍处于未成熟阶段,而且在当前国内外应用较广泛的一些边坡稳定分析软件尚未实现真正意义的全局优化算法。
5.3.3 Sarma法基本原理
如图5.3.2所示,将滑体沿任意条分为n个条块。作用在i第条块上作用力包括重力Wi,条块底面的作用力Ni,Ti,以及条块两侧的作用力Ei、Xi、Ei+1、Xi+1。在第i条块施加一个体积力KcWi,假定在其作用下,滑体处于极限平衡状态,其中Kc是临界加速度系数,边坡的稳定性系数K是Kc为零时的相应值(Sarma,1979)。根据条块垂直和水平方向力的平衡,可以得到:
内外动力地质作用与斜坡稳定性
图5.3.2 Sarma法计算简图
内外动力地质作用与斜坡稳定性
根据mohr-coulomb破坏准则,在条块底面、左侧和右侧界面上有:
内外动力地质作用与斜坡稳定性
将式(5.3.3)、(5.3.4)、(5.3.5)代入式(5.3.1)、(5.3.2),消去Ti、Xi、Xi+1和Ni,可以得到:
内外动力地质作用与斜坡稳定性
由此循环式,不考虑外荷载作用,即边界条件E1=En+1=0,可以求得:
内外动力地质作用与斜坡稳定性
式(5.3.7)中
内外动力地质作用与斜坡稳定性
内外动力地质作用与斜坡稳定性
式中:
Ui、PWi为第i条块底面和侧面上的水压力;cbi、φbi为第i条块底面上的粘聚力和内摩擦角;csi、φsi、csi+1、φsi+1为第i条块第i、i+1侧面上的粘聚力和内摩擦角;δi、δi+1为第i条块第i侧面和第i+1侧面的倾角(以铅直线为起始线,顺时针为正,逆时针为负);αi为第i条块底面与水平面的夹角;bi为第i条块底面水平投影长度;di、di+1分别为第i条块第i侧面和第i+1侧面的长度。
5.3.4 GA-Sarma算法原理
GA-Sarma算法的基本思想是滑裂面为折线形,其扩展方向追踪顺坡向节理面或者其他不连续结构面,潜在滑体以岩层层面等结构面为条分边界,用Sarma极限平衡法计算稳定性系数,以遗传算法优化最危险滑裂面的位置。
5.3.4.1 目标函数的建立
如图5.3.3所示,当滑裂面由M点向坡顶扩展时的可能的路径有无数条,在此假设滑裂带在N点向上扩展时,滑裂路径的可能方向用γ表示,γ是滑裂路径与X轴正方向之间的夹角。若坡体内存在顺坡向不连续结构面(如节理面、软弱夹层等),则滑裂面路径沿不连续结构面扩展。
图5.3.3 边坡滑移路径局部模型示意图
这样,根据Sarma算法有:
内外动力地质作用与斜坡稳定性
确定了γi(i=1,2,…,n)之后,也就确定了滑裂路径,沿该路径可计算出稳定性系数。这样问题就转化成如何搜索γi使得式(5.3.20)的值最小。将γi视为参数,则参数的数量与折线形滑移面的段数的数量一致,这是一个多变量函数的极值问题。
5.3.4.2遗传算法的构造
(1)决策变量、约束条件及目标函数
决策变量就是参数γi的数量,与折线形滑面的段数一致。γi是滑裂路径的扩展方向,因此其取值范围为[0,90°]。目标函数就是:
内外动力地质作用与斜坡稳定性
因此,用遗传算法求解滑裂面的最小稳定性系数,是要找到一个由所有滑动方向构成的滑移路径使f(γi)的值最小。
(2)编码及解码方法
将函数优化问题的解空间转换成遗传算法的搜索空间的过程称为编码(Encoding)二进制编码方法具有编码、解码过程容易操作以及交叉、变异等遗传算子便于实现等优点,是遗传算法中最常用的一种编码方法。
因为γi的取值范围为[0,90°],将每个变量的二进制编码位数取10位,则γi的取值精度约为0.1°。将分别代表变量γi的二进制编码串连接在一起,设滑裂面的折线段数为n,则滑裂路径组成一个共10n位的二进制编码长串,它代表目标函数优化问题的染色体编码。
解码(Decoding)是编码的逆过程,将编码所表示的数值从搜索空间转换到解空间首先将10n位长的二进制编码串分拆成n个分别表示不同变量的二进制编码串,然后把它们分别转换成相应的十进制代码。
(3)适应度函数
适应度函数(Fitness function)是遗传算法进化的指导准则,用来度量个体在优化过程中可能达到或接近于最优解的优良程度。遗传算法按照群体中各个个体的适应度大小来确定个体遗传到下一代的概率,适应度较高的个体比适应度较低的个体遗传到下一代的概率就相对大一些。
稳定性系数最小的滑裂面是一个求目标函数f(γi)的全局最小值问题,因此,适应度函数F(γi)由f(γi)经以下转换得到:
内外动力地质作用与斜坡稳定性
这样F(γi)的物理意义代表着稳定性系数值最小的f(γi)的路径的适应度最大,在遗传与变异过程中最有可能被保存下来。
(4)遗传与变异
选择(Selection)算子在遗传算法中以个体的适应度评价为基础来对群体中的各个个体进行优胜劣汰操作。目的是为了保持基因稳定、增强全局收敛能力和计算效率。在采用回放式随机采样方式的比例选择方法中,个体被选中的概率与其适应度大小成正比。设群体的规模大小为M,第i个个体的适应度Fi由式(5.3.22)得到,则个体i被选中的概率Pi为:
内外动力地质作用与斜坡稳定性
交叉(Crossover)算子在遗传算法中起着重要的作用,是产生新个体的主要方法。算法中采用了如图5.3.4所示的单点交叉方法。
图5.3.4 交叉操作
变异(Mutation)算子相对交叉算子来说,只是产生新个体的一种辅助方法,但也不可忽视,因为它可以改善遗传算法的局部搜索能力,保持群体中个体的多样性,避免出现早熟现象。为了不破坏太多已有的较好模式,变异概率Pi的值取得较小。变异操作如图5.3.5 所示:
图5.3.5 变异操作
(5)保留最优个体的灾变策略
在遗传算法的运行过程中,由于交叉算子产生的新遗传特性不足,群体中所有个体的适应度会出现趁向于相同的现象,使得个体多样性丧失,遗传算法的演化进程陷入僵局。为摆脱这种状况,多次增大变异概率Pi的值,但效果不明显。于是引入灾变策略(Catas-trophe strategy),模仿残酷的自然灾变现象,对群体进行大规模的消亡和产生新的后代的操作,以达到产生新的优良个体的作用。而在实行灾变策略的同时,为了不使已有的最优个体(Elitist)消失,在新的群体生成时保留最优个体至下一代,其他的个体则随机产生。
5.3.5 实例运用及验证
如图5.3.6所示,一个岩质边坡,高度H=30m,坡脚ε=60°,岩层倾角β=40°。边坡中随机分布有不连续结构面。岩体的重度γ=25kN/m3,岩体粘聚力和内摩擦角分别为150kPa、20°;岩层面粘聚力和内摩擦角分别为100kPa、18°;不连续结构面粘聚力和内摩擦角分别为100kPa、10°。以GA-Sarma算法计算边坡最危险滑裂面及其稳定性系数。
5.3.5.1 计算过程
Sarma法中的安全系数值K是在Kc=0的条件下的相应值,方程Kmin(式5.3.21)是一个隐式方程,直接编程求解较为困难,因此GA-Sarma算法用C语言编程并基于Matlab软件平台实现。在上述算例中,坡体中含顺坡向不连续结构面,因此在滑裂面搜索时约束路径必通过PQ,即在该范围的路径编码中变量γi是事先确定的。计算中选取群体规模M100,运行代数为300。当遗传算法在连续30代的运行期间,K值保持不变时,灾变程序开始执行。
图5.3.6 计算实例示意图
5.3.5.2 计算结果
图5.3.7中记录了实行保留最优的灾变策略情况下群体中所有路径对应到K的平均值(蓝色点线)和最小值(红色实线)的变化过程。纵轴代表稳定性系数值,由式(5.3.21)表示的目标函数决定。为清晰起见,图5.3.7中只表示了运行代数为300的情况,实际的运行代数为1000,期间灾变程序执行了16次,K值从15.5下降至1.1996。也就是说,当灾变程序执行后,K的平均值的变化剧烈,而最小值的变化则是稳定下降,但变化幅度不明显。由GA-Sarma法计算的边坡最小稳定性系数为1.1996,相应的最危险滑裂面如图5.3.8所示。
图5.3.7 遗传算法迭代过程中稳定系数的变化情况
图5.3.8 计算所得的最危险滑裂面路径
5.3.5.3 结果验证
为了验证GA-Sarma算法的可靠性和合理性,用国内外广泛应用的边坡稳定性计算商业软件Slide5.0对算例进行计算。图5.3.9表示的是以PQ为滑移面的基准位置进行非圆弧滑动搜索计算的结果,其中红色箭头表示的是滑移面向左右方向扩展的角度范围,阴影块体为最危险滑移体。图5.3.10表示的是以上述GA-Sarma算法求取得最危险滑裂面为指定滑移路径下的计算结果。表5.3.1列举了GA-Sarma算法和Slide软件中其他极限平衡法的稳定性系数值。
图5.3.9 以PQ为基准线搜索计算结果
图5.3.10 以GA-Sarma算法的最优路径为滑移面的计算结果
表5.3.1 算例稳定性系数不同方法的计算结果对照表
表5.3.1结果表明:GA-Sarma算法基于折线形的滑裂面优化计算方法所得的滑移路径更符合岩质边坡的实际破坏失稳模式,稳定性系数小于其他计算方法的全局搜索方法;而相同滑移路径下,GA-Sarma算法由于考虑了层间力作用的平衡,安全系数略小于其他计算方法,但差值很小,则证明了GA-Sarma算法数学模型的可靠性。
武雄关原型是谁
武雄关是千万革命战士中的一员,他只是普通人,在《大决战》剧中他是山东第3师第2团1营8连1排的排长。
在《大决战》中,武雄关相对来说,是一个不起眼的小人物,但他不惧炮火,英勇冲锋,不怕牺牲,以己渡人,用一己之力,唤醒人们心中的热血。
关于剧中的武雄关:
武雄关是山东第3师第2团1营8连1排的排长。在一次战斗中,为了完成上级的任务,他带着连队的人发起了冲锋,战绩是喜人的,可损失是惨重的:8连只剩下了他1个人。
当上面来人给8连发嘉奖令时,团长恨恨地指着他说,发给他吧!8连就剩他1个了。显而易见,伴随着一场胜利之后,武雄关沦为了“光杆司令”。
他本是留守的伤员,却在敌人又一次发起进攻时,毫不犹豫地拿起装备,上战场了。他没有沉浸在战友牺牲的悲痛中,8连其他人都牺牲了,可他在,8连就在,8连的精神就在。所以,他去找了老3团,坚决要求战斗在第一线,于是,他成了9连3排的副排长。
只要活着就还有希望,只要活着,就该发挥更大的价值。他的价值应该发挥在战场上,作为一个战士,就该为新生活开疆辟土!
中国电科院是国网的直属单位吗
中国电科院是国网的直属单位。
经营范围包括认证服务;从事电力系统及工业自动化、高电压与绝缘技术、电能质量及节能、新能源和可再生能源、信息系统、电子产品、通信系统、计算机应用的技术开发、技术转让、技术咨询、服务及开发产品的销售;电力工程承包。
进出口业务;电力工程的技术研究、设计、施工、安装、调试以及与上述业务相关的技术咨询、技术服务、技术开发、技术检测、设备监理、工程监理;输变电工程、防腐保温工程、建筑防水工程的承包、施工与设备安装。
历史沿制
本院历史可追溯到1933年,前身为中国最早的水利科学研究机构—中国第一水工试验所,几经变迁,于1958年经国务院规划委员会批准,将国内多家水利水电科研单位合并,组建了水利水电科学研究院。
1994年经国家科委批准更名为中国水利水电科学研究院,2000年水利部牧区水利科学研究院和水利部电力工业部机电研究所并入我院。
现任院长匡尚富,历任院长有张子林、张光斗、林秉南、张泽祯、杨德晔、陈炳新、梁瑞驹、高季章。先后拥有中国科学院和中国工程院院士13人,现有院士6人分别是中国科学院院士陈祖煜,中国工程院院士朱伯芳、陈厚群、王浩、缪昌文、胡春宏。
已故院士7人分别是中国科学院和中国工程院两院院士张光斗、林秉南,中国科学院院士黄文熙、钱宁、汪闻韶,中国工程院院士陈志恺、韩其为。
陈祖煜的摔伤及康复
机场工作人员发现后立即将其送到当地的医院,经诊断为“颈部无骨折脱位型脊髓损伤,鼻骨骨折,蛛网膜下腔出血”,伤势严重,已造成了四肢瘫痪。次日广州军区广州总医院骨科医院院长尹庆水应邀紧急到深圳会诊,最后两地医学专家决定立即将陈祖煜转到广州救治。
2010年5月11日晚,医院给他做了颈前路减压和植骨内固定的紧急手术。5月26日,陈祖煜已经能斜躺在病床上,手部能够自由比划,下肢也可以轻微运动。 2011年5月4日上午,年届68岁的中国科学院院士陈祖煜院士康复出院,接治陈祖煜的中国康复研究中心今天举办小型欢送会,庆祝院士恢复健康,已经可以不用搀扶行走约40分钟。
陈祖煜院士2010年6月转入位于北京的中国康复研究中心进行康复治疗,医院高度重视院士的病情,以李建军院长为首组成了会诊的专家团队,在11个月的时间里对陈祖煜的身体进行了多方位的治疗。
陈祖煜院士入院时年届67岁,在病床上还积极参与水利水电事业,在病床上完成了中科院的咨询项目报告——《我国重大工程数据的数字化与信息化》。
作为一个“学术型病人”,陈祖煜还自己制作“排尿日记”,绘制图表分析排量方差,在他看来“康复治疗这个医学分支很重要,但是现在重视得还不够。”
同济大学博导名单
同济大学材料科学与工程学院:
2022年博士研究生招生导师名单(按姓氏拼音排序)
C:蔡克峰、陈波、陈庆
D:杜建忠
F:范震、冯艾寒、傅婧
G:高玉魁、郭晓潞
H:何国球、胡勇、胡正飞、黄佳、黄云辉
J:蒋正武、金明
L:李好新、李建波、李洒、李文、李文婷、林健、刘睿、刘斯凤、陆伟、罗巍
M:马吉伟
P:裴艳中、浦鸿汀
Q:邱军、曲寿江
R:任杰
S:孙振平
W:万德成、王茹、王正洲、魏先顺、吴凯
X:项红萍、徐晶、徐玲琳、许维、许晓斌
Y:杨全兵、杨同青、杨正宏、杨正龙、姚爱华、姚曼文、姚武、姚熹、叶松、袁春雪、袁华、袁俊杰、袁伟忠
Z:翟继卫、张弛、张东、张国防、张任远、周春才、朱云卿、祖国庆
同济大学软件学院:
博导
周兴铭、陈祖煜、赵生捷、Gonzalo R、江建慧、穆斌、曹楠、董嘉文、杜庆峰、贾金原、刘琴、路建伟、饶卫雄、史清江、史扬、沈莹、王建民、袁时金、尹长青、张荣庆、张晨曦、张苗苗、张颖、张林