本文目录
华师大版八年级上册数学期末试卷及答案
八年级数学是中学数学的基础,所以数学期末考试要倍加重视和做试题。以下是我为你整理的华师大版八年级上册数学期末试卷,希望对大家有帮助!
华师大版八年级上册数学期末试卷
一、选择题
1,4的平方根是( )
A.2 B.4 C.±2 D.±4
2,下列运算中,结果正确的是( )
A.a4+a4=a8 B.a3•a2=a5 C.a8÷a2=a4 D.(-2a2)3=-6a6
3,化简:(a+1)2-(a-1)2=( )
A.2 B.4 C.4a D.2a2+2
4,矩形、菱形、正方形都具有的性质是( )
A.每一条对角线平分一组对角 B.对角线相等
C.对角线互相平分 D.对角线互相垂直
5,如图1所示的图形中,中心对称图形是( )
图1
6,如图2右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是( )
图2
7,如图3,已知等腰梯形ABCD中,AD∥BC,∠A=110°,则∠C=( )
A.90° B.80° C.70° D.60°
8,如图4,在平面四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=( )
A.55° B.35° C.25° D. 30°
9,如图5所示,将长为20cm,宽为2cm的长方形白纸条,折成图6所示的图形并在其一面着色,则着色部分的面积为( )
A.34cm2 B.36cm2 C.38cm2 D.40cm2
10,(芜湖市)如图7,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为( )
A. cm B.4cm C. cm D.3cm
二、填空题
11,化简:5a-2a= .
12,9的算术平方根是_______.
13,在数轴上与表示 的点的距离最近的整数点所表示的数是 .
14,如图8,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,则∠F =___°
15,如图9,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M,N,在MN上任取
两点P,Q,那么图中阴影部分的面积是 .
16,如图10,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F.则阴影部分的面积是_______.
17,如图11,将矩形纸片ABCD的一角沿EF折叠,使点C落在矩形ABCD的内部C′处,
若∠EFC=35°,则∠DEC′= 度.
18,请你写一个能先提公因式、再运用公式来分解因式的三项式,并写出分解因式的结果 .
19,为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文x,y,z对应密文2x+3y,3x+4y,3z.例如:明文1,2,3对应密文
8,11,9.当接收方收到密文12,17,27时,则解密得到的明文为 .
20,如图12,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是 cm.
三、解答题
21,计算: .
22,化简:a(a-2b)-(a-b)2.
23,先化简,再求值. (a-2b)(a+2b)+ab3÷(-ab),其中a= ,b=-1.
24,如图13是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图13中黑色部分是一个中心对称图形.
25,如图14,在一个10×10的正方形DEFG网格中有一个△ABC.
(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1.
(2)在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C.
(3)若以EF所在的直线为x轴,ED所在的直线为y轴建立直角坐标系,写出A1、A2两点的坐标.
26,给出三个多项式: x2+x-1, x2+3x+1, x2-x,请你选择其中两个进行加法运算,并把结果因式分解.
27,现有一张矩形纸片ABCD(如图15),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.
(1)请用尺规,在图中作出△AEB′.(保留作图痕迹);
(2)试求B′、C两点之间的距离.
28, 2008年,举世瞩目的第29届奥运盛会将在北京举行.奥运五环,环环相扣,象征着全世界人民的大团结.五环图中五个圆环均相等,其中上排三个、下排两个,且上排的三个圆心在同一直线上;五环图是一个轴对称图形.
(1)请用尺规作图,在图16中补全奥运五环图,心怀奥运.(不写作法,保留作图痕迹)
(2)五环图中五个圆心围一个等腰梯形.如图17,在等腰梯形ABCD中,AD∥BC.假设BC=4,AD=8,∠A=45°,求梯形的面积.
29,把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H
(如图18).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
30,如图19,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.试说明AH⊥ED
的理由,并求AG的长.
华师大版八年级上册数学期末试卷参考答案
一、1,C;2,B;3,C;4,C;5,B;6,B;7,C;8,B;9,B;10,A.
二、11,3a;12,3;13,2;14,45;15,8;16,6;17,70;
18,答案不唯一.如,2a2+4a+2=2(a+1)2,mx2-4mxy+4my2=m(x-2y)2.等等;19,3、2、9;20,6-2 .
三、21,原式=2-3+1=0.
22,原式=a2-2ab-(a2-2ab+b2)=a2-2ab-a2+2ab-b2=-b2.
23,原式=a2-4b2+(-b2)=a2-5b2,当a= ,b=-1时,原式=( )2-5(-1)2=-3.
24,如图:
25,(1)和(2)如图:(3)A1(8,2)、A2(4,9).
26,答案不惟一.如,选择多项式: x2+x-1, x2+3x+1.作加法运算:( x2+x-1)+( x2+3x+1)=x2+4x=x(x+4).
27,(1)可以从B、B′关于AE对称来作,如图.
(2)因为B、B′关于AE对称,所以BB′⊥AE,设垂足为F,因为AB=4,BC=6,E是BC的中点,
所以BE=3,AE=5,BF= ,所以BB′= .因为B′E=BE=CE,所以∠BB′C=90°.
所以由勾股定理,得B′C= = .所以B′、C两点之间的距离为 cm.
28,(1)如图中的虚线圆即为所作.
(2)过点B作BE⊥AD于E.因为BC=4,AD=8,所以由等腰梯形的轴对称性可知
AE= (AD-BC)=2.在Rt△AEB中,因为∠A=45°,所以∠ABE=45°,
即BE=AE=2.所以梯形的面积= ( BC+AD)×BE= (4+8)×2=12.
29,HG=HB.连结GB.因为四边形ABCD,AEFG都是正方形,所以∠ABC=∠AGF=90°,
由题意知AB=AG.所以∠AGB=∠ABG,所以∠HGB=∠HBG.所以HG=HB.
30,(1)在正方形ABCD中,因为AD=DC=2,所以AE=CF=1,又因为∠BAD=∠DCF=90°,
所以△ADE与△CDF的形状和大小都相同,所以把△ADE绕点D旋转一定的角度时能与△CDF重合.(2)由(1)可知∠CDF=∠ADE,因为∠ADE+∠EDC=90°,所以∠CDF+∠EDC=90°,
所以∠EDF=90°,又由已知得AH∥DF,∠EGH=∠EDF=90°,所以AH⊥ED.因为AE=1,AD=2,所以由勾股定理,得ED= = = ,所以 AE•AD= ED•AG,
即 ×1×2= × ×AG,所以AG= .
新人教版八年级上册数学期末试卷
不大可能的事也许今天实现,根本不可能的事也许明天会实现。祝你 八年级 数学期末考试取得好成绩,期待你的成功!下面是我为大家精心推荐的新人教版八年级上册数学期末试卷,希望能够对您有所帮助。
新人教版八年级上册数学期末试题
一、选择题(共10小题,每小题3分,满分30分)
1.以下列各组数为边长,能组成直角三角形的是( )
A. , , B.6,8,10 C.5,12,17 D.9,40,42
2.在(﹣ )0, ,0, ,0.010010001…,﹣0.333…, ,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.1个 B.2个 C.3个 D.4个
3.下列计算正确的是( )
A. =2 B. • = C. ﹣ = D. =﹣3
4.已知 +(b﹣1)2=0,则(a+b)2015的值是( )
A.﹣1 B.1 C.2015 D.﹣2015
5.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )
A.(0,﹣2) B.(﹣2,0) C.(4,0) D.(0,﹣4)
6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1
A.y1》y2 B.y1》y2》0 C.y1
7.如果二元一次方程组 的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是( )
A. B.﹣ C. D.﹣
8.已知直线y=mx﹣1上有一点B(1,n),它到原点的距离是 ,则此直线与两坐标轴围成的三角形的面积为( )
A. B. 或 C. 或 D. 或
9.为筹备班级的初中 毕业 联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )
A.中位数 B.平均数 C.众数 D.加权平均数
10.已知一次函数y=kx+b,y随着x的增大而增大,且kb》0,则在直角坐标系内它的大致图象是( )
A. B. C. D.
二、填空题(共10小题,每小题2分,满分20分)
11. =a, =b,则 = .
12.一组数据5,7,7,x的中位数与平均数相等,则x的值为 .
13. ﹣3 + = .
14.已知m是 的整数部分,n是 的小数部分,则m2﹣n2= .
15.若x、y都是实数,且y= ,x+y= .
16.已知xm﹣1+2yn+1=0是二元一次方程,则m= ,n= .
17.在等式y=kx+b中,当x=0时,y=1,当x=1时,y=2,则k= ,b= .
18.某船在顺水中航行的速度是m千米/时,在逆水中航行的速度是n千米/时,则水流的速度是 .
19.如图,△ABC中,∠B=55°,∠C=63°,DE∥AB,则∠DEC等于 .
20.已知:如图所示,AB∥CD,若∠ABE=130°,∠CDE=152°,则∠BED= 度.
三、解答题(共7小题,满分50分)
21.(1)计算:
(2)解下列方程组: .
22.m为正整数,已知二元一次方程组 有整数解,求m的值.
23.如图:
24.如图表示两辆汽车行驶路程与时间的关系(汽车B在汽车A后出发)的图象,试回答下列问题:
(1)图中l1,l2分别表示哪一辆汽车的路程与时间的关系?
(2)写出汽车A和汽车B行驶的路程s与时间t的函数关系式,并求汽车A和汽车B的速度;
(3)图中交点的实际意义是什么?
25.一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.
26.某运动队欲从甲、乙两名优秀选手中选一名参加全省 射击 比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如表:
次数 选手甲的成绩(环) 选手乙的成绩(环)
1 9.6 9.5
2 9.7 9.9
3 10.5 10.3
4 10.0 9.7
5 9.7 10.5
6 9.9 10.3
7 10.0 10.0
8 10.6 9.8
根据统计的测试成绩,请你运用所学过的统计知识作出判断,派哪一位选手参加比赛更好?为什么?
27.已知:如图,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD.
新人教版八年级上册数学期末试卷参考答案
一、选择题(共10小题,每小题3分,满分30分)
1.以下列各组数为边长,能组成直角三角形的是( )
A. , , B.6,8,10 C.5,12,17 D.9,40,42
【考点】勾股定理的逆定理.
【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.
【解答】解:A、( )2+( )2≠( )2,不是直角三角形,故此选项错误;
B、62+82=102,是直角三角形,故此选项正确;
C、122+52≠172,不是直角三角形,故此选项错误;
D、92+402≠422,不是直角三角形,故此选项错误.
故选:B.
【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
2.在(﹣ )0, ,0, ,0.010010001…,﹣0.333…, ,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.1个 B.2个 C.3个 D.4个
【考点】无理数.
【分析】无理数是无限不循环小数,由此即可判定无理数的个数.
【解答】解:在(﹣ )0, ,0, ,0.010010001…,﹣0.333…, ,3.1415,2.010101…(相邻两个1之间有1个0)中,
无理数有0.010010001…, 两个.
故选B.
【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
3.下列计算正确的是( )
A. =2 B. • = C. ﹣ = D. =﹣3
【考点】二次根式的混合运算.
【分析】根据二次根式的性质化简二次根式,根据二次根式的加减乘除运算法则进行计算.
二次根式的加减,实质是合并同类二次根式;二次根式相乘除,等于把它们的被开方数相乘除.
【解答】解:A、 =2 ,故A错误;
B、二次根式相乘除,等于把它们的被开方数相乘除,故B正确;
C、 ﹣ =2﹣ ,故C错误;
D、 =|﹣3|=3,故D错误.
故选:B.
【点评】此题考查了二次根式的化简和二次根式的运算.
注意二次根式的性质: =|a|.
4.已知 +(b﹣1)2=0,则(a+b)2015的值是( )
A.﹣1 B.1 C.2015 D.﹣2015
【考点】非负数的性质:算术平方根;非负数的性质:偶次方.
【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【解答】解:由题意得,a+2=0,b﹣1=0,
解得a=﹣2,b=1,
所以,(a+b)2015=(﹣2+1)2015=﹣1.
故选A.
【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.
5.如果点P(m+3,m+1)在y轴上,则点P的坐标是( )
A.(0,﹣2) B.(﹣2,0) C.(4,0) D.(0,﹣4)
【考点】点的坐标.
【分析】根据y轴上点的横坐标等于零,可得关于m的方程,根据解方程,可得m的值,根据m的值,可得点的坐标.
【解答】解:点P(m+3,m+1)在y轴上,得
m+3=0.
解得m=﹣3,
m+1=﹣2,
点P的坐标是(0,﹣2),
故选:A.
【点评】本题考查了点的坐标,利用y轴上点的横坐标等于零得出关于m的方程是解题关键.
6.点A(x1,y1),点B(x2,y2)是一次函数y=﹣2x﹣4图象上的两点,且x1
A.y1》y2 B.y1》y2》0 C.y1
【考点】一次函数图象上点的坐标特征.
【分析】由一次函数y=﹣2x﹣4可知,k=﹣2《0,y随x的增大而减小.
【解答】解:由y=﹣2x﹣4可知,k=﹣2《0,y随x的增大而减小,
又∵x1
初二数学上册期末试题
八年级上学期期末数学模拟试卷
命题人:福景外国语学校 徐玲
班级___________姓名________________座号_________成绩______________
一、填空题(每空1分,共20分):
1、5的平方根是_____,32的算术平方根是_____,-8的立方根是_____。
2、化简:(1) (2) ,(3) = ______。
3、如图1所示,图形①经
过_______变化成图形②,图
形②经过______变化成图形③,
图形③经过________变化成图形④。
4、用两个一样三角尺(含30°角的那个),能拼出______种平行四边形。
5、估算:(1) ≈_____(误差小于1)
6、已知:四边形ABCD中,AB=CD,要使四边形ABCD为平行四边形,需要增加__________。(只需填一个你认为正确的条件即可)
7.一个多边形的内角和比外角和的3倍多1800,则它的
边数是___________.
8,.某种大米的单价是2.4元/千克,当购买x千克大米时,花费为y元,则x与y的函数关系式是
9..如图直线L一次函数y=kx+b的图象,
则b= ,k=
10..若 ,则x= ;y= 。
11..调查某车间在一天中加工零件的情况如下:有2人加工18个零件,有1人每人加工14个零件,有4人每人加工11个零件,有1人加工15个零件.根据上述数据,这组数据的平均数为________ ,这组数据的众数为__________,中位数是__________ 。
二.选择题(每小题2分,共20分):
12. 如图4是我校的长方形水泥操场,如果一学生要
从A角走到C角,至少走( )
A.140米 B.120米 C.100米 D.90米
13、下列说法中,正确的有( )
①无限小数都是无理数; ②无理数都是无理限小数;
③带根号的数都是无理数; ④-2是4的一个平方根。
A. ①③ B. ①②③ C. ③④ D. ②④
14、如图5,已知点O是正三角形ABC三条高的交点,
现将⊿AOB绕点O至少要旋转几度后与⊿BOC重合。( )
A. 60° B. 120° C. 240° D. 360°
15、和数轴上的点成一一对应关系的数是( )
A.自然数 B.有理数 C.无理数 D. 实数
16、如图6所示,在 ABCD中,E、F分别AB、CD的中点,连结DE、EF、BF,则图中平行四边形共有( )
A.2个 B.4个 C.6个 D.8个
17.点M(-3,4)离原点的距离是( )单位长度.
A. 3 B. 4 C. 5 D. 7.
18.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是( )
A.12 B.15 C.13.5 D.14
三、化简(每小题3分,共20分):
19. 20.
21. 用作图象的方法解方程组:
四、解答题(每题5分,共30分)
22 经过平移, 的边AB移到了EF,作出平移后的三角形,你能给出几种作法?
23. 如图,在□ABCD中,AC与BD相交于点O,AB⊥AC,∠DAC=45°AC=2,求BD的长。
A D
O
B C
24.已知:如图,正方形ABCD中,点E,F分别是AD,BC的中点。
(1)△ABE≌△CDF吗? (2)四边形BFDE是平行四边形吗?
A E D
B F C
25.点P1是P(-3,5)关于x轴的对称点,且一次函数过P1和A(1,-2),
求此一次函数的表达式,并画出此一次函数的图像。
26.我校八年级实行小班教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室。问这个学校共有教室多少间?八年级共有多少人?
27.小靓家最近购买了一套住房。准备在装修时用木质地板铺设居室。用瓷砖铺设客厅。经市场调查得知:用这两种材料铺设地面的工钱不一样,小靓根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图所示,请你根据图中所提供的信息,解答下列问题
(1)预算中铺设居室的费用为_____元/m?,铺设客厅的费用为____元/m?;
(2)表设铺设居室的费用y元与面积x(m?)之间的函数关系式为_______。表示铺设客厅的费用y(元)与面积x(m?)之间的关系式为_________。
(3)已知在小靓的预算中。铺设1m?的瓷砖比铺设木质地板的工钱多5元;购买1m?的瓷砖是购买1m?木质地板费用的3/4。那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?
居室
客厅
答案
一 1) ; 3; -2
2) (1)3 (2)5 (3)
3)轴对称 平移 旋转
4)3种
5)4或5
6)AB‖CD或AD=BC等
7)9边
8)y=2.4x(x≥0)
9)3;-
10)1;-1
11)14.1;14;14
二
12)C;13)D 14)B 15)D
16)B 17)C 18)D
三
19)1- 20)
21)
22)3种
23)2
24)略
25)y= x-
26)21间;480人
27)135;110;
y=135x;y=110x
地板的手工钱:15元/㎡;瓷砖的手工钱:20元/㎡
地板的材料费:120元/㎡;瓷砖的材料费:90元/㎡
八年级上学期数学期末复习题
一、细心填一填
足彩胜负 05021 期 开奖结果
开奖日期:2005-05-23 兑奖截止日期:2005-06-20
亚特兰 卡利亚 切 沃 拉齐奥 利沃诺 布雷西 帕尔玛 桑普多 斯图加 纽伦堡 凯泽斯 比勒菲 多 特 弗赖堡
0 1 3 1 1 3 1 0 0 0 0 0 3 0
1.观察中国足球彩票胜负
彩05021期开奖公告,回
答问题:在本期开奖结
果中(针对数字)“1”出
现的频数是 “0”
出现的频率是 .
2.某校八年级(5)班60
名学生在一次英语测试中,优秀的占45%,在扇形统计图中,表示这部分同学的扇形圆心角是 度;表示良好的扇形圆心角是120°,则良好的学生有 人.
3.下赶岗女工张嫂再就业做快餐盒饭的小生意,前5天销售情况如下:第一天50盒,第二天62盒,第一天57盒,第一天70盒,第一天78盒.要清楚地反映盒饭的前5天销售情况,应选择制作 统计图.
4.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 。
5.下图是小明画出的雨季某地某星期降雨量的条形图.
(1)这个星期的总降雨量约有 mm;
(2)如果日降雨量在25毫米以上为大雨,那么这个星期哪几天在下大雨? .
6.有100名学生参加两次科技知识测试.条形图显示两次测试的分数分布情况.请你根据条形图提供的信息,回答下列问题(把答案填在题中横线上);
(1)两次测试最低分在第 次测试中;(2)第 次测试较容易;
7.一组数据经整理后分成四组,第一、二、三小组的频率分别为0.1,0.3,,0.4,第一小组的频数是5,那么第四小组的频率是 ,这组数据共有 个.
8.一个容量为20的样本数据分组后,组距与频数如下:10< ≤20,2;20< ≤30,3;30< ≤40,4;40< ≤50,5;50< ≤60,4;60< ≤70,2.则样本在10< ≤50上的频率是( )
A. 0.20 B. 0.25 C. 0.50 D. 0.70
二、精心选一选
1.下列各数中可以用来表示频率的是( )(A)-0.1(B)1.2 (C)0.4(D)
2.扇形统计图中扇形占圆的30%,则此时扇形所对的圆心角为( )
(A)120° (B)108° (C)90° (D)60°
3.将100个数据分成8个
组,如下表:则第六组的
频数为( )
(A)12 (B)13 (C)14 (D)15
4.甲校女生占全校总人数的50%,乙校男生占全校总人数的50%,比较两校女生人数( )
(A)甲校多于乙校 (B)甲校与乙校一样多(C) 甲校多于乙校 (D) 不确定
5.下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )
(A)180万 (B)200万 (C)300万 (D)400万
6.已知一组数据63、65、67、
69、66、64、66、64、65、68,在64.5~66.5之间的数据出现的频率是( ) (A)0.4 (B)0.5 (C)5 (D)4
7.2005年第一季度,钢铁及新材料、轿车等机械制造、烟草及食品、光电子信息、石化、环保等十大行业的快速发展,带动了武汉市国民经济的快速增长.其中,规模居前的6个行业第一季度的生产规模占这十大行业同期生产总规模的百分比依次是27%、18%、10%、16%、9%、6.25%(如图).
已知环保第一季度的生产规模约27亿元,则此次统计中第一季度十大行业生产总规模及其中规模超过40亿元的行业个数分别为( )
(A)约432亿元,3 (B)约432亿元,4
(C)约372.6亿元,3 (D)约372.6亿元,4
8.如图是小刚一天中的作息时间分配的扇形
统计图.如果小刚希望把自己每天的阅读时间
调整为2时,那么他的阅读时间需增加( )
(A)15分.(B)48分.(C)60分.(D)105分.
三、认真答一答
1.图①、②是李晓同学根据所在学校三个年级男女生人数画出的两幅条形图.
(1)两个图中哪个能更好地反映学校每个年级学生的总人数?哪个图能更好地比
较每个年级男女生的人数?
(2)请按该校各年级学生人数在图③中画出扇形统计图.
2.中国足球甲级联赛于2005年6月11日结束了上半程的最后一轮比赛,积分榜如下表。请你根据表中提供的信息,解答下面问题:
(1)补全图中的条形统计图;
(2)十四支甲级队在联赛中失球最少是哪个队?负的场次最多的是哪个队?
(3)进球数20个以上(含20个)的球队占参赛球队的百分数为多少(精确到1%)?
名次 队名 场次 胜 平 负 进球 失球 净胜球 积分
1 厦门蓝狮 13 10 2 1 26 8 18 32
2 长春亚泰 13 8 4 1 36 12 24 28
3 广州日之泉 13 7 4 2 22 6 16 25
4 江苏舜天 13 6 6 1 20 10 10 24
5 浙江巴贝绿城 13 7 2 4 20 12 8 23
6 青岛海信 13 6 4 3 16 14 2 22
7 河南建业 13 4 5 4 14 15 -1 17
8 延边 13 5 1 7 22 19 3 16
9 上海九城 13 3 6 4 21 18 3 15
10 南京有有 13 3 6 4 20 18 2 15
11 成都五牛 13 4 1 8 20 30 -10 13
12 湖南湘军 13 3 2 8 10 25 -15 11
13 大连长波 13 3 1 9 9 30 -21 10
14 哈尔滨国力 13 0 0 13 0 39 -39 0
3.甲、乙两人在某公司做见习推销员,推销“小天鹅”洗衣机,
他们在1~8月份的销售情况如下表所示:
月份 甲的销售量
(单位:台) 乙的销售量
(单位:台)
1月 7 5
2月 8 6
3月 6 5
4月 7 6
5月 6 7
6月 6 7
7月 7 8
8月 7 9
(1)在上边给出的坐标系中,绘制甲、乙两人这8个月的月销售量的折线图:(甲用实线;乙用虚线)
(2)请根据(1)中的折线图,写出2条关于甲、乙两人在这8个月中的销售状况的信息. ① ;
② .
4. (本题满分10分)为了了解学校开展“孝敬父母,从家务做起”活动的实施情况。该校抽取初二年级50名学生,调查他们一周(按七天计算)做家
务所用的时间(单位:小时),得到一组数据,并绘制成下表。请
分组 频数累计 频数 频率
0.55~1.05 正正 14 0.28
1.05~1.55 正正正 15 0.30
1.55~2.05 正 7
2.05~2.55 4 0.08
2.55~3.05 正 5 0.10
3.05~3.55 3
3.55~4.05 0.04
合计 50 50 1.00
根据该表回答下列各题:
(1)将频数分布表补充完整.
(2)由以上信息判断,每周做家务的时间
不超过1.5小时的学生所占的百分比.
(3)作出反映调查结果的统计图
(4)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.
四、解答题:
1.如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD‖BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.
(1)用序号写出一个真命题(书写形式如:如果×××,
那么××),并给出证明:
(2)用序号再写出三个真命题(不要求证明);
(3)加分题:真命题不止以上四个,想一想,就能够多
写出几个真命题,每多写出一个真命题就给你加1分,
最多加2分.
回答者: 啧啧族 | 二级 | 2011-1-9 09:29
一、填空题(每小题3分,共36分)
1.单项式2πa2 b的次数是 .
2.函数y=x+√2x+4中自变量x的取值范围是 .
3.点P(m,1)与点Q(2,n)关于x轴对称,则m2+n2=_______.
4.写出一个与 图象平行的一次函数: __________.
5.分解因式ax2-ay2 =
6.直线 与 的交点坐标为_____________.
7.若4x2 -kxy+y2 是一个完全平方式,则k= . B D
8.若 与 是同类项,则 = .
9.( )÷ C (第11题) A
10.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm, BD=7cm,则点D到AB的距离为_____________cm.
11.如图在直角ΔABC中,∠ACB=90°∠A=30°,CD是斜边AB边上的高,若AB=4,则BD= .
12.观察下列各个算式:1×3+1=4=2 ;2×4+1=9=3 ;3×5+1=16=4 ;4×6+1=25=5 ;--------根据上面的规律,请你用一个含n(n》0的整数)的等式将上面的规律表示出来 。
二、选择题(每小题4分,共20分)
13、下列运算不正确的是 ( )
A、 x2·x3=x5 B、 (x2)3=x6 C、 x3+x3=2x6 D、 (-2x)3=-8x3
14、下列属于因式分解,并且正确的是( ).
A、x2-3x+2=x(x-3)+2 B、x4-16=(x2+4)(x2-4)
C、(a+2b)2=a2+4ab+4b2 D、x2-2x-3=(x-3)(x-1)
15、等腰三角形的一个内角是50°,则另外两个角的度数分别是( )
A、65°,65° B、58°,80° C、65°,65°或50°,80° D、50°,50°
16、下面是某同学在一次测验中的计算摘 ① ②
③ ④ ⑤ ⑥
其中正确的个数是( ) A、1个 B、2个 C、3个 D、4个
17.如图,正方形纸片ABCD,M,N分别是AD,BC的中点,把BC
向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,
则∠PBQ为 ( )(A)15°(B)20°(C)30°(D)45°
三、解答下列各题(共94分)。
18.因式分解: (7分) 19.因式分解:(7分)2(x-y)(x+y)-(x+y)2
20.用乘法公式计算:(本小题10分)
(1) ; (2)(x+5)2-(x-3)2
21、先化简,再求值: 其中 .(8分)
22、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图(如图).已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)求第二小组的频数和频率;(2)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比(8分)
苏教版八年级上册数学期末试卷及答案
精神爽,下笔如神写华章;孜孜不倦今朝梦圆。祝你 八年级 数学期末考试成功!下面是我为大家精心推荐的苏教版八年级上册数学期末试卷,希望能够对您有所帮助。
苏教版八年级上册数学期末试题
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第3页相应答题栏内,在卷Ⅰ上答题无效)
1.如图所示4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
2.若a》0,b《﹣2,则点(a,b+2)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.使分式 无意义的x的值是( )
A.x=﹣ B.x= C.x≠﹣ D.x≠
4.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA
5.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m的值为( )
A.﹣1 B.1 C.3 D.﹣1或3
6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4千米/小时 B.乙的速度是10千米/小时
C.甲比乙晚到B地3小时 D.乙比甲晚出发1小时
二、填空题(本大题共10小题,每小题2分,共20分.请将答案填写在第3页相应答题栏内,在卷Ⅰ上答题无效)
7.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为 .
8.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是 .
9.化简: ﹣ = .
10.已知 ,则代数式 的值为 .
11.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是 cm.
12.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
13.如图,△ABC是等边三角形,点D为AC边上一点,以BD为边作等边△BDE,连接CE.若CD=1,CE=3,则BC= .
14.如图,已知函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b》ax﹣3的解集是 .
15.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为 cm2.
16.当x分别取﹣ 、﹣ 、﹣ 、…、﹣ 、﹣2、﹣1、0、1、2、…、2015、2016、2017时,计算分式 的值,再将所得结果相加,其和等于 .
三、解答题(本大题共有9小题,共68分,解答时在试卷相应的位置上写出必要的文字说明、证明过程或演算步骤.)
17.计算: +|1+ |.
18.解方程: =1+ .
19.如图,正方形网格中的每个小正方形边长都是1.
(1)图1中已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形(要求:画出一个即可);
(2)在图2中画出一个以格点为端点长为 的线段.
20.已知:y﹣3与x成正比例,且当x=﹣2时,y的值为7.
(1)求y与x之间的函数关系式;
(2)若点(﹣2,m)、点(4,n)是该函数图象上的两点,试比较m、n的大小,并说明理由.
21.在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC交CE的延长线于F.
(1)求证:△ACD≌△CBF;
(2)求证:AB垂直平分DF.
22.先化简,再求值:( ﹣ )÷ ,其中x= .
23.如图所示,“赵爽弦图”由4个全等的直角三角形拼成,在Rt△ABC中,∠ACB=90°,AC=b,BC=a,请你利用这个图形解决下列问题:
(1)证明勾股定理;
(2)说明a2+b2≥2ab及其等号成立的条件.
24.已知直线l1:y=﹣ 与直线l2:y=kx﹣ 交于x轴上的同一个点A,直线l1与y轴交于点B,直线l2与y轴的交点为C.
(1)求k的值,并作出直线l2图象;
(2)若点P是线段AB上的点且△ACP的面积为15,求点P的坐标;
(3)若点M、N分别是x轴上、线段AC上的动点(点M不与点O重合),是否存在点M、N,使得△ANM≌△AOC?若存在,请求出N点的坐标;若不存在,请说明理由.
25.在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM= ∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.
(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;
(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.
苏教版八年级上册数学期末试卷参考答案
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项填写第3页相应答题栏内,在卷Ⅰ上答题无效)
1.如图所示4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.
【解答】解:A、是轴对称图形,故正确;
B、不是轴对称图形,故错误;
C、不是轴对称图形,故错误;
D、不是轴对称图形,故错误.
故选A.
【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.若a》0,b《﹣2,则点(a,b+2)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】点的坐标.
【专题】压轴题.
【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.
【解答】解:∵a》0,b《﹣2,
∴b+2《0,
∴点(a,b+2)在第四象限.故选D.
【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
3.使分式 无意义的x的值是( )
A.x=﹣ B.x= C.x≠﹣ D.x≠
【考点】分式有意义的条件.
【分析】根据分母为0分式无意义求得x的取值范围.
【解答】解:根据题意2x﹣1=0,
解得x= .
故选:B.
【点评】本题主要考查分式无意义的条件是分母为0.
4.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )
A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA
【考点】全等三角形的判定.
【专题】压轴题.
【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.
【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;
B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;
C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;
D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.
故选:B.
【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.
5.一次函数y=mx+|m﹣1|的图象过点(0,2),且y随x的增大而增大,则m的值为( )
A.﹣1 B.1 C.3 D.﹣1或3
【考点】一次函数的性质.
【分析】由(0,2)在一次函数图象上,把x=0,y=2代入一次函数解析式得到关于m的方程,求出方程的解即可得到m的值.
【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),
∴把x=0,y=2代入y=mx+|m﹣1|得:|m﹣1|=2,
解得:m=3或﹣1,
∵y随x的增大而增大,
所以m》0,
所以m=3,
故选C;
【点评】此题考查了利用待定系数法求一次函数的解析式,此 方法 一般有四步:设,代,求,答,即根据函数的类型设出所求相应的解析式,把已知的点坐标代入,确定出所设的系数,把求出的系数代入所设的解析式,得出函数的解析式.
6.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4千米/小时 B.乙的速度是10千米/小时
C.甲比乙晚到B地3小时 D.乙比甲晚出发1小时
【考点】函数的图象.
【分析】根据图象可知,A,B两地间的路程为20千米.甲比乙早出发1小时,但晚到2小时,从甲地到乙地,甲实际用4小时,乙实际用1小时,从而可求得甲、乙两人的速度,由此信息依次解答即可.
【解答】解:A、甲的速度:20÷4=5km/h,错误;
B、乙的速度:20÷(2﹣1)=20km/h,错误;
C、甲比乙晚到B地的时间:4﹣2=2h,错误;
D、乙比甲晚晚出发的时间为1h,正确;
故选D.
【点评】此题主要考查了函数的图象,重点考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
二、填空题(本大题共10小题,每小题2分,共20分.请将答案填写在第3页相应答题栏内,在卷Ⅰ上答题无效)
7.已知函数y=(n﹣2)x+n2﹣4是正比例函数,则n为 ﹣2 .
【考点】正比例函数的定义.
【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.
【解答】解:y=(n﹣2)x+n2﹣4是正比例函数,得
,
解得n=﹣2,n=2(不符合题意要舍去).
故答案为:﹣2.
【点评】解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
8.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是 (﹣3,﹣1) .
【考点】点的坐标.
【分析】根据到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度,第三象限的点的横坐标与纵坐标都是负数解答.
【解答】解:∵点C到x轴的距离为1,到y轴的距离为3,且在第三象限,
∴点C的横坐标为﹣3,纵坐标为﹣1,
∴点C的坐标为(﹣3,﹣1).
故答案为:(﹣3,﹣1).
【点评】本题考查了点的坐标,熟记四个象限的符号特点:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.
9.化简: ﹣ = .
【考点】二次根式的加减法.
【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.
【解答】解:原式=2 ﹣
= .
故答案为: .
【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
10.已知 ,则代数式 的值为 7 .
【考点】完全平方公式.
【专题】压轴题.
【分析】根据完全平方公式把已知条件两边平方,然后整理即可求解.
【解答】解:∵x+ =3,
∴(x+ )2=9,
即x2+2+ =9,
∴x2+ =9﹣2=7.
【点评】本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.
11.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是 5