×

初二数学试题库

初二数学试题库(初二数学上册几何题库)

jnlyseo998998 jnlyseo998998 发表于2023-01-09 06:23:06 浏览27 评论0

抢沙发发表评论

本文目录

初二数学上册几何题库

如图,点M是平行四边形ABCD的边AD的中点
,点P是边BC上的一个动点,PE∥MB,PF∥MC,分别交MC于点E、交MB于点F,如果AB︰AD=1︰2,试判断四边形PEMF的形状,并说明理由。
)如图6,在梯形ABCD中,AD‖BC,
对角线AC与BD交于点O,M、N分别为OB、OC的
中点,又∠ACB=∠DBC.
(1)求证:AB=CD;
(2)若AD=21BC.求证:四边形ADNM为矩形.
你可以上学科网。上面有很多试题。

初二数学80道试题及答案

初二下学期数学试题
一,填空:(每空2分,共30分)
1,当x____时,分式x/(2x-1)有意义;当x____时(x2-3x-4)/(x2-5x-6)值为零.
2,1/49的平方根是____.
3,3-(5)1/2的有理化因式是____.
4,在RTΔABC中,∠C=90°,AB=13cm,AC=12cm,则BC=____,AB上的高是____.
5,如果(7.534)1/2=2745,那么(753.4)1/2=____.
6,对角线____的平等四边形是矩形.
7,一个多边形的内角和为1260°,则这个多边形是____边形.
8,正方形对角线的长为9(2)1/2cm,它的周长是____,面积是____.
9,下列各数中,π,3.14,-(5)1/2,0,,11/21其中无理数是____.
10,二次根式(2)1/2,(75)1/2,(1/27)1/2,(1/50)1/2,(3)1/2中,
最简根式有____同类根式有____.
11,在梯形中,中位线长为17cm,两条对角线互相垂直,并且其中一条对角线与下底的夹角为30°,
则梯形两条对角线长为____.
二,选择题(每题3分,共30分)
1,2的算术平方根是( ).
A,25 B,5 C,(5)1/2 D,±5
2,菱形是轴对称图形,它的对称轴共有( ).
A,二条 B,四条 C,六条 D,八条
3,下列条件中,能判定是平行四边形的有( ).
A,一组对边相等 B,两条对角线相等
C,一组对角相等,另一组对角互补 D,一组对角相等,一组邻角互补
4,下列式子计算正确的是( ).
A,(3)1/2+(2)1/2=(5)1/2 B,(a2-b2)1/2=a-b(a》b)
C,(2)1/2(5)1/2=(10)1/2 D,2(1/5)1/2=10(5)1/2
5,x取怎样的实数时,式子/(x-1)在实数范围内有意义( ).
A,x≥-3 B,x》-3 C,x≠1 D,x≥-3且x≠1
6,下列运算正确的是( ).
A,
C,
7,正方形具有而菱形不一定具有的性质是( ).
A,对角线互相平分 B,对角线相等 C,对角线平分一组对角 D,对角线互相垂直
8,化简:1/2,得( ).
A,m/a(am)1/2 B,m/a(-am)1/2 C,-m/a(am)1/2 D,-m/a(-am)1/2
9,现有下列四种图形(1)平行四边形,(2)菱形,(3)矩形,(4)正方形,能够找到一点,
使该点到各边距离都相等的图形是( ).
A,(1)与(2) B,(2)与(3) C,(2)与(4) D,(3)与(4)
10,若分式议程(x-1)/(x-2)=a/(x-2)产生增根,则a的值是( ).
A,2 B,1 C,0 D,-1
三,解答题(每题3分,共15分)
1,计算:(1)x+2-4/(2-x) (2)
(3)解方程:1/(x2-x)=1/(2x-x2)-4/(x2-3x+2)
(4)ΔABC的两条高为BE,CF,M为BC的中点,求证:ME=MF.
(5)画一个菱形,使它的边长为3cm,一条对角线长为4cm.(不写画法,保留作图痕迹).
四(1)若x》0,y》0,且x+3(xy)1/2-4y=0.求(x)1/2:(y)1/2的值.(4分)
(2)已知a2-3a+1=0,求(a+1/a2-2)1/2的值.(5分)
五,已知:正方形ABCD的边长为16,F在AD上,
CE⊥CF交AB延长线于E,ΔCEF的面积为200,
求BE的长.(6分)
六,列方程解应用问题(6分)
甲,乙两人都从A地出发到B地,已知两地相距50千米,且乙的速度是甲的速度的2.5倍,现甲
先出发1小时30分钟,乙再出发,结果乙比甲先到B地1小时,求两人的速度各是多少
七,正方形ABCD的对角线BD上取BE=BC,
连CE,P为CE上一点,PQ⊥BC;PR⊥BE,
求证:PQ+PR={/2}AB(4分

有什么初二数学的练习题好- -求推荐(人教版)

《五年中考三年模拟》真的很好,,还有《单科集训》《尖子生题库》《分类精选》《天利38套》什么的,,都很好的。。

初二数学试题及答案

一. 选择题:(3分×6=18分)
1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )
2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是( )
A. 1/6cm B. 1/3cm C. 1/2cm D. 1cm
3. 下列命题为真命题的是( )
A. 若x,则-2x+3《-2y+3
B. 两条直线被第三条直线所截,同位角相等
D. 全等图形一定是相似图形,但相似图形不一定是全等图形
5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是( )
A. 数据75落在第2小组
B. 第4小组的频率为0.1
D. 数据75一定是中位数
6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。设乙每小时走x公里,则可列方程为( )
二. 填空题:(3分×6=18分)
7. 分解因式:x3-16x=_____________。
8. 如图,已知AB//CD,∠B=68o,∠CFD=71o,则∠FDC=________度。
9. 人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:
10. 点P是Rt△ABC的斜边AB上异于A、B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在下图中画出满足条件的直线,并在相应的图形下面简要说明直线PE与△ABC的边的垂直或平行位置关系。
位置关系:____________ ______________ __________
12. 在△ABC中,AB=10。
三. 作图题:(5分)
13. 用圆规、直尺作图,不写做法,但要保留作图痕迹。
小明为班级制作班级一角,须把原始图片上的图形放大,使新图形与原图形对应线段的比是2:1,请同学们帮助小明完成这一工作。
四. 解答题:(共79分)
14. (7分)请你先化简,再选取一个使原式有意义,而你又喜爱的数代入求值:
15. (8分)解下列不等式组,在数轴上表示解集,并写出它的整数解。
16. (8分)溪水食品厂生产一种果糖每千克成本为24元,其销售方案有以下两种:
方案一:若直接送给本厂设在本市的门市部销售,则每千克售价为32元,但门市部每月须上交有关费用2400元;
方案二:若直接批发给本地超市销售,则出厂价为每千克28元。
若每月只能按一种方案销售,且每种方案都能按月售完当月产品,设该厂每月的销售量为x千克。
(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?
(2)厂长听取各部门总结时,销售部长表示每月都是采取了最佳方案进行销售的,所以取得了较好的工作业绩,但厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表写的销售量与实际上交利润有不符之处,请找出不符之处,并计算第一季度的实际销售总量。
17. (8分)浩浩的妈妈在运力超市用12.50元买了若干瓶酸奶,但她在利群超市发现,同样的酸奶,这里要比运力超市每瓶便宜0.2元钱,因此,当第二天买酸奶时,便到利群超市去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在运力超市买了几瓶酸奶?
18. (8分)未成年人思想道德建设越来越受到社会的关注。某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观。根据100个调查数据制成了频数分布表和频数分布直方图:
(1)补全频数分布表和频数分布直方图;表格中A=______,B=______,C=______
(2)在该问题中样本是________________________________________。
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校1000名学生中约多少学生提出这项建议?
19. (8分)(1)一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。你能帮他求出树高为多少米吗?
(2)在一天24小时内,你能帮助他找到其它测量方式吗(可供选择的有尺子、标杆、镜子)?请画出示意图并结合你的图形说明:
使用的实验器材:________________________________
需要测量长度的线段:________________________________
20. (8分)某社区筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上喷涂油漆进行装饰。如图,(1)他们在△AMD和△BMC地带上喷涂的油漆,单价为8元/m2,当△AMD地带涂满后(图中阴影部分)共花了160元,请计算涂满△BMC地带所需费用。(2)若其余地带喷涂的有屹立和意得两种品牌油漆可供选择,单价分别为12元/m2和10元/m2,应选择哪种油漆,刚好用完所筹集的资金?
21. (12分)探索与创新:
如图:已知平面内有两条平行的直线AB、CD,P是同一平面内直线AB、CD外一动点。(1)当P点移动到AB、CD之间,线段AC两点左侧时,如图(1),这时∠P、∠A、∠C之间有怎样的关系?
请证明你的结论:
(2)当P点移动到AB、CD之间,线段AC两点的右侧时,如图(2),这时∠P、∠A、∠C之间有怎样的关系?(不必证明。)答:
(3)随着点P的移动,你是否能再找出另外两类不同的位置关系,画出相应的图形,并写出此时∠P、∠A、∠C之间有怎样的关系?选择其中的一种加以证明。
实践与应用:
将一矩形纸片ABCD(如图)沿着EF折叠,使B点落在矩形内B1处,点C落在C1处,B1C1与DC交于G点,根据以上探索的结论填空:
22. (12分)利用几何图形进行分解因式,通过数形结合可以很好的帮助我们理解问题。
(1)例如:在下列横线上添上适当的数,使其成为完全平方式。
如上图,“x2+8x”就是在边长为x的正方形的基础上,再加上两个长为x,宽为4的小长方形。为使其成为完全平方式(即图形变成正方形),必须加上一个边长为4的小正方形。即x2+8x+42=(x+4)2。
请在下图横线上画图并用文字说明x2-4x+_______=(x-______)2的做法并填空。
说明:
(2)已知一边长为x的正方形和一长为x宽为8的长方形面积之和为9,看图求边长x:(在字母A、B、C、x处添上相应的数或代数式)
A=__________,B=__________
C=__________,x=__________
(3)完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式进行分解因式,例如:利用面积分解因式:a2+4ab+3b2,
所以:a2+4ab+3b2=(a+b)(a+3b)。
结合本题和你学到的分解因式的知识写一个含有字母a、b的代数式,画出几何图形,利用几何图形写出分解因式的结果。提供以下三种图形:边长分别为a、b的正方形、长为a宽为b的长方形(每种至少使用一次)。
【试题答案】
一. 选择题:
1. A 2. D 3. D 4. B 5. D 6. B
提示:
1. 1
2.
5. 25+20+9+6=60人
A:69.5《75《79.5 ∴75落在第2小组
B:第四小组频数为6
D:中位数在69.5~79.5之间,但不一定是75
6. 解:乙的速度为x公里/小时,甲的速度为(x+3)公里/小时
二. 填空题:
7. 8. 41 9. 乙
10.
PE//BC或PE⊥AC PE⊥BC或PE//AC PE⊥AB
11. -1 12. 50
提示:
8. 解:
9.
11. 解:方程两边同乘以x—5得
12. 解:
三. 作图题:
13. 方法不唯一,合理即可
四. 解答题:
14. 解:
15. 解:
16. (1)解:设方案一获利为y1元,方案二获利为y2元
实际销售量应为2100千克
17. 解:设浩浩妈妈第一次在运力超市买了x瓶酸奶,根据题意得
经检验:x=5是所列方程的根
答:第一次在运力超市买了5瓶酸奶
18. (1)10,25,0.25
(2)大连市内某校100名学生寒假中花零花钱的数量
(3)1000×(0.3+0.1+0.05)=450人
19. (1)解:设树高AB为x米
(2)尺子、标杆;DE、CE、BC
20. 解:
选择意得牌油漆刚好用完所筹集的资金
21. (1)证明:过P作PE//AB
实践与应用:90 270
22. (1)22 2
说明:“x2—4x”看作从边长为x的正方形的面积上,减去两个长为x,宽为2的小长方形,为使其成为完全平方式,(即图形变为正方形),多减了一个边长为2的小正方形,必须加上一个边长为2的小正方形,即x2-4x+22=(x-2)2。
(2)x+4;4;25;1
(3)a2+2ab+b2=(a+b)2

初二数学计算题及答案

初二数学期中考试
班级__________ 姓名__________ 成绩__________
一、选择(每小题3分共10小题)
1.下列说法不正确的是( )
A.三角形的内心是三角形三条角平分线的交点.
B.与三角形三个顶点距离相等的点是三条边的垂直平分线的交点.
C.在任何一个三角形的三个内角中,至少有2个锐角.
D.有公共斜边的两个直角三角形全等.
2.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是( )
A.7 B.6 C.5 D.4
3. 因式分解为( )
A. B.
C. D.
4.a、b是(a≠b)的有理数,且 、 则 的值( )
A. B.1 C.2 D.4
5.等腰三角形一腰上的高与底边的夹角是45°,则此三角形是( )
A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形
6.已知: 则x应满足( )
A.x<2 B.x≤0 C.x>2 D.x≥0且x≠2
7.如图已知:△ABC中AB=AC,DE是AB边的垂直平分线,△BEC的周长是14cm,且BC=5cm,则AB的长为( )
A.14cm B.9cm C.19cm D.11cm
8.下列计算正确的是( )
A. B.
C. D.
9.已知 . . .则 的值是( )
A.15 B.7 C.-39 D.47
10.现有四个命题,其中正确的是( )
(1)有一角是100°的等腰三角形全等
(2)连接两点的线中,直线最短
(3)有两角相等的三角形是等腰三角形
(4)在△ABC中,若∠A-∠B=90°,那么△ABC是钝角三角形
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
二、填空(每小题2分共10小题)
1.已知 则 __________________
2.分解因式 ____________________________
3.当x=__________________时分式 值为零.
4.若 ,那么x=____________________________
5.计算 ________________________________
6.等腰三角形的两边a、b满足 则此等腰三角形的周长=_____________________________
7.等腰三角形顶角的外角比底角的外角小30°,则这个三角形各内角为___________
_____________________
8.如图在△ABC中,AD⊥BC于D,∠B=30°,∠C=45°,CD=1则AB=____________
9.如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE‖BC与AB相交于E.AB=5cm、AC=2cm,则△ADE的周长=______________________
10.在△ABC中,∠C=117°,AB边上的垂直平分线交BC于D,AD分∠CAB为两部分.∠CAD∶∠DAB=3∶2,则∠B=__________
三、计算题(共5小题)
1.分解 (5分)
2.计算 (5分)
3.化简再求值 其中x=-2(5分)
4.解方程 (5分)
5.为了缓解交通堵塞现象,决定修一条从市中心到飞机场的轻轨铁路.为了使工程提前3个月完成,需将原计划的工作效率提高12%,问原计划此工程需要多少个月?(6分)
四、证明计算及作图(共4小题)
1.如图已知:在△ABC中,AB=AC,∠A=120°,DF垂直平分AB交AB于F交BC于D,求证: (5分)
2.如图C为AB上一点,且△AMC、△CNB为等边三角形,求证AN=BM(6分)
3.求作一点P,使PC=PD且使点P到∠AOB两边的距离相等.(不写作法)(5分)
4.如图点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.(8分)
求证(1)AE=CF
(2)AE‖CF
(3)∠AFE=∠CEF
参考答案
一、选择(每小题3分共10小题)
1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.C 9.B 10.C
二、填空(每小题2分共10小题)
1.2 2. 3.1 4.5 5.
6.7 7.80° 50° 50° 8.2 9.7cm 10.18°
三、计算题(共5小题)
1.解:
2.解:

3.解:
当 时
原式的值 .
4.解:

检验:x=4是原方程之根.
5.设原计划此工程需要x月
检验 是原方程的根.
答:原计划28个月完成.
四、证明计算及作图(共4小题)
1.证:连AD.
∵ ∠A=120°
AB=AC
∴ ∠B=∠C=30°
∵ FD⊥平分AB.
∴ BD=AD
∠B=∠1=30°
∠DAC=90°
∵ 在Rt△ADC中
∠C=30°


2.证:∵ C点在AB上
A、B、C在一直线上.
∠1+∠3+∠2=180°
∵ △AMC和△CNB为等边三角形
∴ ∠1=∠2=60°
即∠3=60°
AC=MC,
CN=CB
在△MCB和△ACN中

∴ △MCB≌△ACN(SAS)
∴ AN=MB.
3.
4.证① 在△ABF和△DCE中

∴ △ABF≌△DCE(SAS)
∴ AF=CE,∠1=∠2
∵ B、F、E、D在一直线上
∴ ∠3=∠4(同角的补角相等)
即∠AFE=∠CEF
② 在△AFE和△CEF中

∴ △AFE≌△CEF(SAS)
∴ AE=CF ∠5=∠6
∵ ∠5=∠6
∴ AE‖CF.
③ ∵ ∠3=∠4
即∠AFE=∠CEF.

初二数学题库

1.(1)0.1 (2)2,±2 (3)±8,4 (4)0和±1,0和1,0
2.A
3.D
4.(1)10 (2)0.5 (3)-9 (4)-3/2
5.(1)-2 (2)3/4 (3)原式=2/5+3/5=1
6.解:依题意可知小正方形的棱长为125/8的立方根,即5/2(厘米)
7.2的立方根 2 n的立方根
8.-5
1.(1)因为0.1×0.1×0.1=0.001
所以0.001的立方根=0.1
(2)因为2×2×2=8
所以8的立方根=2
因为4×4×4=64
所以64的立方根=4
(3).因为(-a)的立方=-a的立方
所以-(-4)的立方=-(-64)=64
所以-(-4)的立方的平方=64的平方根=±8
-(-4)的立方的立方根=64的立方根=4
(4).设第一个数为a,第二个数为b,第三个数为c,
则a的立方=a,∴a=0,a=±1
√b=b的立方根,∴b≥0,∴b=0,b=1
±√c=c的立方根,∴c≥0,又-√c=c,∴c=0
2.这道题明显只有一个答案,因为
所有实数都有且只有一个立方根。(所以第一小题不对)
正数有一个正的立方根,正数的立方是负数
负数有一个负的立方根,负数的立方是负数(所以第二小题就对了)
因为4×4×4=64,所以64的立方根=4(即第三小题错了)
任何一个实数的平方是非负数(所以那条式子应等于4,这道也错了)
其它改天再写

初二数学计算题500道

+60= 19
+0+1+2= -3
= 50
= -1
+4/5+19/6= 1.25
+18.54+6.14= -8
1.125+= -3
-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y 1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为 ( )
A. 4032×108 B. 403.2×109 C. 4.032×1011 D. 0.4032×1012
2、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是 ( )

3、下列各组数中,相等的一组是 ( )
A.-1和- 4+(-3) B. |-3|和-(-3) C. 3x2-2x=x D. 2x+3x=5x2
4.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00
时整,则巴黎时间是 ( )
A.7月2日21时 B.7月2日7时 C.7月1日7时 D.7月2日5时
5、国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小
磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为 A. 1000元 B. 900元 C. 800元 D. 700元 ( )
6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为 ( )
A. 0.7a 元 B. 0.3a元 C. 元 D. 元
7、两条相交直线所成的角中 ( )
A.必有一个钝角 B.必有一个锐角 C.必有一个不是钝角 D.必有两个锐角
8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )
A.900个 B.1080个 C.1260个 D.1800个
9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是 ( )
A. 3 B. –3 C. –4 D. 4
10、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )
A. –6 B.8 C. –9 D. 9
11. 下面说法正确的是 ( )
A. 过直线外一点可作无数条直线与已知直线平行 B. 过一点可作无数条直线与已知直线垂直
C. 过两点有且只有二条直线 D. 两点之间,线段最短.
12、正方体的截面中,边数最多的多边形是 ( )
A.四边形 B.五边形 C.六边形 D. 七边形
二、 填空题
13、用计算器求4×(0.2-3)+(-2)4时,按键的顺序是
14、计算51°36ˊ=________°
15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.
16、 已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,
A C D B 则DB= ㎝
17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e =___________.
18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:
则第(4)个图案中有白色地面砖________块;第n
(1) (2) (3) 个图案中有白色地面砖_________块.
19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小
20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.
21、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:

……
第一次捏合后 第二次捏合后 第三次捏合后
这样捏合到第 次后可拉出128根细面条。
22、若x=1时,代数式ax3+bx+1的值为5,则x=- 1时,代数式ax3+bx+1的值等于
三、 解答题
23.计算① 36×( - )2 ②∣ (-2)3×0.5∣-(-1.6)2÷(-2)2
③ 14(abc-2a)+3(6a-2abc) ④ 9x+6x2-3(x- x2),其中x=-2
24.解方程① - = 1 ② (x+1)=2- (x+2)
③ { +3}=2 ④ - =-1.6
25. 在左下图的9个方格中分别填入-6,-5,-4,-1,0,1,4,5,6使得每行、每列、斜对角的三个数的和均相等.
26. 在一直线上有A、B、C三点, AB=4cm,BC=0.5AB,点O是线段AC的中点,求线段OB的长度.
27某校学生列队以8千米/ 时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度是12千米/时,从队尾出发赶到排头又回队尾共用了3.6分钟,求学生队伍的长.
28某班全体同学在“献爱心”活动中都捐了图书,捐书情况如下表:
每人捐书的册数 5 10 15 20
相应的捐书人数 17 22 4 2
根据题目中所给的条件回答下列问题:
(1)该班的学生共 多少名; (2)全班一共捐了 册图书;
(3)将上面的数据成制作适当的统计图。
29.星星果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3 杯B种果汁、2杯A种果汁,一共花了16元。A种果汁、B种果汁的单价分别是多少元?
30.“中商”近日推出“买200元送80元”的酬宾活动,现有一顾客购买了200元的服装,得到80元的购物赠券(可在商场通用,但不能换钱),当这名顾客在购买这套服装时,一售货员对顾客说:“酬宾活动中购买商品比较便宜,相当于打6折,即 100%=60%.”他的说法对吗?
31.某材料供应商对顾客实行如下优惠办法:一次购买金额不超过1万元,不予优惠;一次购买超
过1万元,但不超过3万元,给予9折优惠;一次购买超过3万元的,其中3万元9折优惠,超
过3万元的部分8折优惠。某厂因库容原因,第一次在该供应商处购买材料付款7800元,第二次
购买付款26100元,如果他是一次购买同样数量的材料,可少付金额多少元?
一、填空题(每小题3分,共24分)
1.(-1)2002-(-1)2003=_________________.
答案:2
2.已知某数的 比它大 ,若设某数为x,则可列方程_______________.
答案: x=x+
3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=AD;若AB=BC=CD,则AB=________BD.
图1
答案:BD,BC,
4.若∠α=41°32′,则它的余角是____________,它的补角是__________.
答案:48°28′,138°28′
5.如图2,求下列各角:∠1=___________,∠2=___________,∠3=___________.
图2
答案:62.5°,25°,130°
6.两条直线相交,有_____________个交点;三条直线两两相交最多有_____________个交点,最少有_____________个交点.
答案:且只有一,三,一
7.38°12′=_____________°,67.5°=__________°___________′.
答案:38.2,67,30
8.如果 x2-3x=1是关于x的一元一次方程,则a=_________________.
答案:
二、选择题:(每小题3分,共24分)
9.下列说法中,正确的是
A.|a|不是负数 B.-a是负数
C.-(-a)一定是正数 D. 不是整数
答案:A.
10.平面上有任意三点,经过其中两点画一条直线,共可以画
A.一条直线 B.二条直线 C.三条直线 D.一条或三条直线
答案:D.
11.下列画图语句中,正确的是
A.画射线OP=3 cm B.连结A、B两点
C.画出A、B两点的中点 D.画出A、B两点的距离
答案:B.
12.下列图形中能折成正方体的有
图3
A.1个 B.2个 C.3个 D.4个
答案:D.
13.下列图形是,是左边图形绕直线l旋转一周后得到的是
图4
答案:D.
14.图5是某村农作物统计图,其中水稻所占的比例是
图5
A.40% B.72% C.48% D.52%
答案:C.
15.下列说法,正确的是
①所有的直角都相等 ②所有的余角都相等 ③等角的补角相等 ④相等的角是直角.其中正确的是
A.①② B.①③ C.②③ D.③④
答案:B.
16.若|x- |+(2y+1)2=0,则x2+ y2的值是
A. B.
C.- D.-
答案:B.
三、解答下列各题
17.计算题(每小题3分,共12分)
(1)(- )×(-1 )÷(-1 ) (2)32÷(-2)3+(-2)3×(- )-22
(3)( - )÷( - )2÷(-6)2-(- )2
(4)1 ×〔3×(- )2-1〕- 〔(-2)2-(4.5)÷3〕
答案:(1)-1 (2)-2 (3)- (4)-
18.解方程:(每小题5分,共10分)
(1) 〔 ( x- )-8〕= x+1
(2) - - =0
答案:(1)x=- (2)x=-
19.(6分)如图6,已知AOB为直线,OC平分∠AOD,∠BOD=50°,求∠AOC的度数.
图6
答案:65°
20.(6分)一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
答案:36°
21.(6分)制作适当的统计图表示下表数据:
1949年以后我国历次人口普查情况
年份 1953 1964 1982 1990 2000
人口(亿) 5.94 6.95 10.08 11.34 12.95
答案:可制作条形统计图 (略).
22.(12分)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18 s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?
解:设客车的速度是5x,则货车速度为3x.根据题意,得
18(5x+3x)=200+280.
解得x= ,即客车的速度是 m/s.货车的速度是10 m/s75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) ×30
156× (947-599)+76×64
36×(913-276÷23) ×67
÷2.5 81432÷(13×52+78)
5.4÷
(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7
4/7÷ (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷ 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
33.02-(148.4-90.85)÷2.5
1)23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(9)(-17/4)+(-10/3)+(+13/3)+(11/3)
(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(11)(+1.3)-(+17/7)
(12)(-2)-(+2/3)
(13)|(-7.2)-(-6.3)+(1.1)|
(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(15)(-2/199)*(-7/6-3/2+8/3)
(16)4a)*(-3b)*(5c)*1/6
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10
1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)
2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2
3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2
4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=^2
=(xz+yz)^2
=z^2(x+y)^2
6.
3(a+2)^2+28(a+2)-20
=
=(3a+4)(a+12)
7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10
1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)
2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2
3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2
4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=^2
=(xz+yz)^2
=z^2(x+y)^2
6.
3(a+2)^2+28(a+2)-20
=
=(3a+4)(a+12)
7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1) 1、奥运会会场里5排2号可以用(5,2)表示,则(7,4)表示 。毛
2、81的算术平方根是______,=________.
3、不等式-4x≥-12的正整数解为 .
4、要使有意义,则x的取值范围是_______________。
5、在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .
7、如图所示,请你添加一个条件使得AD‖BC, 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P(-2,1)向上平移2个单位后的点的坐标为 。
10.观察下列等式, =2,=3, =4,请你写出含有n(n》2的自然数)的等式表示上述各式规律的一般化公式: .
二.同学们我是福娃晶晶上面欢欢的题答的怎么样了?我可遇到难题了,老师给我出了一些选择题,我没达到老师的要求,没能收集到会标,全靠你们了(共20枚每题两枚)。
11、奥运会需要一种多边形形状的瓷砖用来铺设无缝地板,购买的瓷砖形状不可能是( )
A、等边三角形; B、正方形; C、正八边形; D、正六边形
12、有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;
(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。其中正确的说法的个数是( )
A.1 B.2 C.3 D.4
13、在,,-,,3.14,2+,- ,0,,1.262662666…中,属于无理数的个数是( )
A.3个 B. 4个 C. 5个 D.6个
14.已知a《b,则下列式子正确的是( )
A.a+5》b+5­ B.3a》3b; C.-5a》-5b­ D.》

初二数学题应用题

解:设这个仓库的长为x米,则宽为140/x米
由题知围建仓库的板墙长为32米,因为中间开了一个2米的门,且仓库一面靠墙,则按两种情况分析:
1.若靠墙的一面为仓库的长边,则剩余3边的和为32+2=34米,即2*140/x+x=34,化为一元二次方程为:
x^2-34x+280=0
解得x=14或者x=20,则宽分别为10米或者7米
因假设的是仓库的长边靠墙,而墙长为16米,则知道仓库的长只能小于或等于16米,所以x=20的解不符合,即得该仓库的长为14米,宽为10米。
2.若靠墙的一面为仓库的宽边,同样有剩余3边的和为34米,即2*x+140/x=34,化为一元二次方程为:
x^2-17x+70=0
解得x=7或者x=10,这里可以看出和第一种情况完全相同,只不过第一种情况求出来的是仓库的长边,第二种得出来的是短边。