本文目录
100道初二物理计算题!含答案啊!!急急急急急急急急急
1 一根电阻丝,将其对折后,它的电阻是多大? 解 不考虑温度的影响,对折后,长度为原来的 ,横截面积为原来的2倍,材料不变. 电阻R′= = = 为原来的 答案 电阻是原来的 2 (西安市中考试题)关于公式 R= 的物理意义,下面说法中正确的是 ( ) A.导体的电阻与它两端的电压成正比,和通过它的电流成反比 B.导体中通过的电流越大,则电阻越小 C.加在导体两端的电压越大,则电阻越大 D.导体的电阻等于导体两端的电压和通过它的电流之比(精析)考查一个电阻的大小是否随电压和电流大小而变化. 精析 公式R= 可用来测量和计算电阻大小,但是导体的电阻并不是由加在它两端的电压和通过电阻的电流大小决定的. 一个电阻两端的电压增大为原来的几倍,通过它的电流也增大到同样的倍数,而比值是一个定值.只是由电压和电流比值决定的量. 当一个电阻两端的电压为零时,这个电阻也不为零.因此,不能说“电阻和电压成正比,和电流成反比”. 答案 D3 (西安市中考试题)若导体两端电压为6V时,通过它的电流强度是0.1 A,则该导体的电阻大小为________Ω;若该导体两端电压为3V,则通过它的电流强度为________A;若两端电压为零,则该导体的电阻为________Ω. 精析 考查电阻的计算及电阻是否随电压大小而变化. 解 当U1=6V I1=0.1A时 电阻 R= = =60Ω 当U2=3V R不变R=60Ω 电流 I2= = =0.05A 当U3=0时,R仍不变,R=60Ω 答案 60Ω,0.05A,60Ω4 (辽宁省中考试题)王明同学在修理电子玩具时,需要用一个75Ω的电阻,现手边有阻值为300Ω、100Ω、40Ω、35Ω及15Ω的电阻各一个,他可以选择其中________Ω和________Ω两个电阻________联来获得;还可以选择其中________Ω和________Ω的两个电阻________联来获得. 精析 考查是否能熟练计算串、并联电阻. 第(1)种选择:很容易看出:40Ω+35Ω=75Ω 第(2)种选择:设总电阻为75Ω,其中一个分电阻为300Ω,利用 = + 求出R2=100Ω.可知 = + 答案 45Ω和35Ω串联可得75电阻;300和100 电阻并联,也可得75Ω电阻.5 电阻R1和R2串联后接入电路,如果它们两端总电流是16V, R1两端的电压是12V,R2的电阻是10Ω,求R1的阻. 精析 考查串联电路的电乙、电压特点,并进行计算。 根据题意,画出电路图并标明已知量的符号和数值,同时也标出未知量的符号.见图2—2—1.图2—2—1 已知:U=16 V,U1=12V,R2=10Ω 求:R1 解法1 R1、R2串联,因为R1= ,所以需要先求出电路中的电流. ∵ I1=I2可先求出I2 U2=U-U1=16V-12V=4V I2= = =0.4A I1=I2=0.4A R1= = =30Ω. 解法2 R1、R2串联:I1=I2 = (电压和电阻成正比) R1= · = ×10Ω=30Ω 答案 30Ω6 (北京市中考试题)电阻R1、R2并联在电压为6V的电源上,通过干路的电流是0.75A,R1的阻值是12Ω,则R2的阻值是________. 精析 考查并联电路电压、电流的规律及计算. 根据题意画出电路图,并标出已知量和未知量的符号及已知量的数值.如图2—2—2.图2—2—2 已知:U=6V,I=0.75 A,R1=12 Ω 求:R2 要求R2,需求得U1和I2. 答案 R2=24Ω7 (北京市中考试题)如图2—2—3所示,电源电压保持不变,当开关S闭合,滑动变阻器的滑片P向右滑动时,电压表 ( )图2—2—3 A.V1示数增大,V2的示数增大 B.V1示数减小,V2的示数增大 C.V1示数减小,V2的示数减小 D.V1示数增大,V2的示数减小 精析 分析电路中电压的变化,还是考查对公式U=IR的理解.在串联电路中,由于R的变化,引起I的变化,从而引起某个电阻两端电压的变化. 分析 从图中看:R1和R2串联,V1测的是R1两端电压U1,V2测的是变阻器两端的电压U2,画出便于分析的图2—2—4.图2—2—4 进一步分析可知,滑片P向右移动,变阻器电阻增大,根据I= ,总电压不变,总电阻变大,电流I减小.致使U1的变化:U1=I R1,其中R1不变,I减小,U1减小. U2的变化:U2=U-U1,U不变,U1减小,U2增大. 提示 如果用公式U2=IR2分析U2的变化不易得到结论,因为I减小,R2增大,两者的乘积如何变化是个未知数.所以采用先分析定值电阻两端的电压变化,再分析变化电阻两端的电压变化的方法更好. 答案 B8 (上海市中考试题)如图2—2—5,闭合S,当滑动变阻器的滑片P向右移动时,电流表A的示数将________.(选填 “变小”、“不变”或“变大”)图2—2—5 精析 先要识别电路,如果审题不仔细,会认为R1、R2串联.实际上:R1、R2是并联电路,电流表测的是R1的电流,画出等效电路图2—2—6.图2—2—6 当滑片P向右移动时,流过R1的电流为I1= ,U不变,R1不变,I1不变. 也可以根据并联电路的特点,各支路互相不影响,所以流过R1的电流不变. 答案 不变 9 如图2—2—7,两个电阻都为R0,再与变阻器R′,并联接到电路中,在R′,的滑片向右滑动的过程中,电路总电阻R的变化范围是 ( )图2—2—7 A.R变大,R0>R>0.5R0 B.R变小,2R0>R>R0 C.R变大,但R<0.5R0 D.R变小,R<0.5R0 精析 可将3个电阻的并联,等效为两个电阻的并联,然后再分析总电阻的变化. R0与R0并联,电阻=0.5R0,再与R′并联,总电阻R一定小于0.5 R0,选项范围缩小到C或D. 又因为0.5 R0不变,滑片向右移动,R′增大,总电阻也应该增大. 答案 C10 (南京市中考试题)如图2—2—8所示的电路中,电源电压不变,开关S闭合,滑动变阻器滑片向右移动时,电流表和电压表的示数将 ( )图2—2—8 A.电流表示数变大,电压表的示数变大 B.电流表示数变小,电压表的示数不变 C.电流表示数变大,电压表的示数不变 D.电流表示数变小,电压表的示数变小 精析 识别电路,然后分析电路中电阻的变化,电流的变化及电压的变化. 去掉电压表,很容易看出电路是一个串联电路. 测的是R1两端的电压. 当变阻器滑片向右移动时,电路中总电阻变大,电流减小. R1两端电压U1=I R1,I减小,R1不变,U1减小. 答案 D 11 如图2—2—9所示电路,电源电压U不变.将开关S闭合,电流表A1的读数将________,电流表A2的读数将________,电压表V的读数将_________. (填“变大”、 “变小”或“不变”)精析 如图2—2—9是并联电路,应从并联电路的特点出发去分析问题,且并联电路各支路互不影响. 当S闭合后,所以U不变,则电压表V的读数不变. 流过R2的电流I2= ,U和R2不变,I2不变. 测的是干路电流,S闭合前, 示数为I,S闭合后, 示数为I+I1,I不变,所以 增加. 答案 增大, 不变, 不变12 (北京市西成中考试题)定值电阻R和滑动变阻器串联后,接在电压不变的电源上.当变阻器接入电路的电阻为变阻器最大阻值R1的一半时,电路中的电流为I;发变阻器接入电路的电阻为变阻器最大阻值R1时,电路中的电流为I′.比较I′和I的大小,可知 ( ) A.0<I′<0.5I B.0.5I<I′<I C.I<I′<2I D.I′<2I 精析 第一次,电阻R和 串联,I= . 第二次,电阻R和R1串联, I′= 比较两次电流:I′<I 比较I′和0.5I,0.5I= ×( )= <I′ 0.5I<I′ 可得:0.5I<I′<I. 答案 B13 (山西省中考试题)如图 2—2—10,电阻R1=2Ω,某同学在实验过程中记录了三只电表的读数,但漏记了单位,记下的一组数据是1、2、3(电流单位是A,电压单位是V),则这位同学所用的电源电压为________V,R2的阻值为________Ω.图2—2—10 精析 首先分析电路的连接方式及电表测量的是哪个量. 从电流流向,可以分析出R1、R2并联.A2测量的是R1的电流,A1测量的是R1、R2的总电流.A1的示数应大于A2的示数. 可以先假设数据“3”表示的是电压3V,则流过R1的电流I1= =1.5A,但数据中没有“1.5”这个数值,表明假设不对. 设数值“2”表示的是电压2V,流过R1的电流为I1= = 1A.数值“3”表示的是干路电流I,则流过R2的电流I2=3A-lA=2A,R2的阻值:R2= =lΩ. 答案 2V,1Ω14 (甘肃省中考试题)如图2—2—11所示电路,已知电源电压为6V,电阻Rl=10Ω,滑动变阻器R2的最大值是20Ω,当滑动片P从a向b移动的过程中,电压表的最大示数是________V,电流表最小示数是________A.图2—2—11 精析 当电路中的电阻变化时,可将变化电路转化为不变电路进行求解. 已知:U=6V,Rl=10Ω,R2=20Ω 求:电压表最大示数Ul,电流表最小示数I 解 当滑片P在a端时, 示数为电源电压、示数最大:U1=U=6V 当滑片P在b端时,R1、R2串联,电路中电阻最大,电流最小. I= = =0.2A 答案 6V,0.2A15 如图2—2—12(a)的电路中,电源电压U=15V不变,R1=4Ω.当变阻器的滑片P从一端滑动到另一端的过程中,电压表示数从2V变化到6V.求:(1)电阻R2的阻值;(2)变阻器R,的最大阻值 精析 对于较复杂的变化电路计算,应先画出变化前后的电路,然后再找出I、U、R之间的关系,列出方程. 这是一个串联电路. 当滑片P在最左端时,R′=0,R1两端分的电压最大.根据题意:U1=6V,画出电路草图2—2—12(b) 当滑片P在最右端时,R′最大,R1两端电压Ul′=2V,画出电路草图2—2—12(c) (a) (b) (c) 解 由图(b)得:I= = =1.5A U2=U-U1=15V-6V=9V 串联I2=I=1.5A,R2= = =6Ω 由图(c)得:I′= = =0.5A U2′=I′R2=0.5A×6Ω=3V R′= = =20Ω 答案 R2=6Ω,变阻器R′=20Ω
谁能给我100道初二数学计算题
一元一次方程
选择题
1.已知(x+y)∶(x-y)=3∶1,则x∶y=( )。
A、3∶1 B、2∶1 C、1∶1 D、1∶2
2.方程-2x+ m=-3的解是3,则m的值为( )。
A、6 B、-6 C、 D、-18
3.在方程6x+1=1,2x= ,7x-1=x-1,5x=2-x中解为 的方程个数是( )。
A、1个 B、2个 C、3个 D、4个
4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程( )。
A、|3a-(-4)|=9 B、|3a-4|=9
C、3|a|-|-4|=9 D、3a-|-4|=9
5.若关于x的方程 =4(x-1)的解为x=3,则a的值为( )。
A、2 B、22 C、10 D、-2
答案与解析
答案:1、B 2、A 3、B 4、D 5、C
解析:
1.分析:本题考查对等式进行恒等变形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵ 3是方程-2x+ m=-3的解,
∴ -2×3+ m=-3,
即-6+ m=-3,
∴ m=-3+6,——根据等式的基本性质1
∴ m=6,——根据等式的基本性质2
∴ 选A。
3.分析:6x+1=1的解是0,2x= 的解是 ,7x-1=x-1的解是0,5x=2-x的解是 。
4.略。
5.分析:因为x=3是方程 =4(x-1)的解,故将x=3代入方程满足等式。
一、 多变量型
多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。
解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电 度。依题意,得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、 分段型
分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
例二:(2005年东营市)某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克) 不超过
20千克 20千克以上
但不超过40千克 40千克以上
每千克价格 6元 5元 4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。
解:
1) 当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+4(50-x)=264
解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉
例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( )
住院医疗费(元) 报销率(%)
不超过500元的部分 0
超过500~1000元的部分 60
超过1000~3000元的部分 80
……
A、1000元 B、1250元 C、1500元 D、2000元
解:设此人住院费用为x元,根据题意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D。
三、 方案型
方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。
例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;
(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15
用40座客车的辆数表示总人数:40(x-2)+35。
解:(1)该校初三年级学生的总人数为:30x+15
(2)由题意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年级总共195人。
四、 数据处理型
数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。
例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 6:00 4小时 264千米
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 264千米
解:
行驶区间 车次 起始时刻 到站时刻 历时 全程里程
A地—B地 K120 2:00 4:24 2.4小时 264千米
分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。
解:设列车提速后行驶时间为x小时. 根据题意,得
经检验,x=2.4符合题意.
答:到站时刻为4:24,历时2.4小时
例六:(2005浙江省)据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1 500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0
例如,要确定从B站至E站火车票价,其票价为 (元).
(1) 求A站至F站的火车票价(结果精确到1元);
(2) 旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).
解: (1) 解法一:由已知可得 .
A站至F站实际里程数为1500-219=1281.
所以A站至F站的火车票价为 0.12 1281=153.72 154(元)
解法二:由已知可得A站至F站的火车票价为 (元).
(2)设王大妈实际乘车里程数为x千米,根据题意,得: .
解得 x= (千米).
对照表格可知, D站与G站距离为550千米,所以王大妈是D站或G站下的车
.
若10的m次方=20,10的n次方=5分之一,求9的m次方除以3的2n次方的值
答案10^m÷10^n=20÷1/5
10^(m-n)=100=10^2
所以m-n=2
9^m÷3^2n
=9^m÷(3^2)^n
=9^m÷9^n
=9^(m-n)
=9^2
=81
75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) ×30
156× (947-599)+76×64
36×(913-276÷23) ×67
÷2.5 81432÷(13×52+78)
5.4÷
(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.2
×1.6-18.305÷7
4/7÷ (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷ 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
初二数学计算题
问题补充:求过程
如果你把分子看做=n^2+5n+6=(n+2)(n+3) ,而每两个相邻的乘数之间间隔为2,所以分子可以看做(n+2)(n+3)(n+4)(n+5)...
因此分子是3*4*5*6*...*2003*2004
同理分母可以化为2*3*4*5*...*2002*2003
这样分子分母将相同因子消掉得到:
=(3*4*5*6*...*2003*2004)/(2*3*4*5*...*2002*2003)
=2004/2
=1002
(1-1/2²)(1-1/3²)(1-1/4²)……(1-1/100²)
1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)……(1-1/100)(1+1/100)
=1/2×3/2×2/3×4/3×3/4×……99/100×101/100
=1/2×101/100
=101/200
2x-6/4-4x+x^2除以(x+3)*(x+3)(x-2)/3-x
=-(x-1)×(x-2)
=-X^2+3x-2
初二数学计算题附带答案
①5√8-2√32+√50
=5*3√2-2*4√2+5√2
=√2(15-8+5)
=12√2
②√6-√3/2-√2/3
=√6-√6/2-√6/3
=√6/6
③(√45+√27)-(√4/3+√125)
=(3√5+3√3)-(2√3/3+5√5)
=-2√5+7√5/3
④(√4a-√50b)-2(√b/2+√9a)
=(2√a-5√2b)-2(√2b/2+3√a)
=-4√a-6√2b
⑤√4x*(√3x/2-√x/6)
=2√x(√6x/2-√6x/6)
=2√x*(√6x/3)
=2/3*|x|*√6
⑥(x√y-y√x)÷√xy
=x√y÷√xy-y√x÷√xy
=√x-√y
⑦(3√7+2√3)(2√3-3√7)
=(2√3)^2-(3√7)^2
=12-63
=-51
⑧(√32-3√3)(4√2+√27)
=(4√2-3√3)(4√2+3√3)
=(4√2)^2-(3√3)^2
=32-27
=5
⑨(3√6-√4)?
=(3√6)^2-2*3√6*√4+(√4)^2
=54-12√6+4
=58-12√6
⑩(1+√2-√3)(1-√2+√3)
=
=1-(√2-√3)^2
=1-(2+3+2√6)
=-4-2√6
(1)5√12×√18
=5*2√3*3√2
=30√6;
(2)-6√45×(-4√48)
=6*3√5*4*4√3
=288√15;
(3)√(12a)×√(3a) /4
=√(36a^2)/4
=6a/4
=3a/2.
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=^2
=(xz+yz)^2
=z^2(x+y)^2
6.
3(a+2)^2+28(a+2)-20
=
=(3a+4)(a+12)
7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
9.
9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=
=(3x^2-3x-8)(3x^2-3x+7)
有理数练习
练习一(B级)
(一)计算题:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=^2
=(xz+yz)^2
=z^2(x+y)^2
6.
3(a+2)^2+28(a+2)-20
=
=(3a+4)(a+12)
7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
9.
9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=
=(3x^2-3x-8)(3x^2-3x+7)
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)
43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53. ÷2.5
54.5.4÷
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71. ÷2.5
72.5.4÷
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
2、 2-6/13÷9/26-2/3
3、 2/9+1/2÷4/5+3/8
4、 10÷5/9+1/6×4
5、 1/2×2/5+9/10÷9/20
6、 5/9×3/10+2/7÷2/5
7、 1/2+1/4×4/5-1/8
8、 3/4×5/7×4/3-1/2
9、 23-8/9×1/27÷1/27
10、 8×5/6+2/5÷4
11、 1/2+3/4×5/12×4/5
12、 8/9×3/4-3/8÷3/4
13、 5/8÷5/4+3/23÷9/11
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51. ÷2.5
52.5.4÷
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6
102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11. ÷2.5
12.5.4÷
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
7×(5/21+9/714)
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)
2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2
3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2
4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=^2
=(xz+yz)^2
=z^2(x+y)^2
6.
3(a+2)^2+28(a+2)-20
=
=(3a+4)(a+12)
7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)
8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
写完一遍后再别这些题写一遍,以此类推,老师们看作业都是一看而过不会一个一个批的。
初二数学30道计算题和答案
1.下列说法不正确的是( )
A.三角形的内心是三角形三条角平分线的交点.
B.与三角形三个顶点距离相等的点是三条边的垂直平分线的交点.
C.在任何一个三角形的三个内角中,至少有2个锐角.
D.有公共斜边的两个直角三角形全等.
2.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是( )
A.7 B.6 C.5 D.4
3. 因式分解为( )
A. B.
C. D.
4.a、b是(a≠b)的有理数,且 、 则 的值( )
A. B.1 C.2 D.4
5.等腰三角形一腰上的高与底边的夹角是45°,则此三角形是( )
A.锐角三角形 B.钝角三角形 C.等边三角形 D.等腰直角三角形
6.已知: 则x应满足( )
A.x<2 B.x≤0 C.x>2 D.x≥0且x≠2
7.如图已知:△ABC中AB=AC,DE是AB边的垂直平分线,△BEC的周长是14cm,且BC=5cm,则AB的长为( )
A.14cm B.9cm C.19cm D.11cm
8.下列计算正确的是( )
A. B.
C. D.
9.已知 . . .则 的值是( )
A.15 B.7 C.-39 D.47
10.现有四个命题,其中正确的是( )
(1)有一角是100°的等腰三角形全等
(2)连接两点的线中,直线最短
(3)有两角相等的三角形是等腰三角形
(4)在△ABC中,若∠A-∠B=90°,那么△ABC是钝角三角形
A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)
二、填空(每小题2分共10小题)
1.已知 则 __________________
2.分解因式 ____________________________
3.当x=__________________时分式 值为零.
4.若 ,那么x=____________________________
5.计算 ________________________________
6.等腰三角形的两边a、b满足 则此等腰三角形的周长=_____________________________
7.等腰三角形顶角的外角比底角的外角小30°,则这个三角形各内角为___________
_____________________
8.如图在△ABC中,AD⊥BC于D,∠B=30°,∠C=45°,CD=1则AB=____________
9.如图在△ABC中,BD平分∠ABC且BD⊥AC于D,DE‖BC与AB相交于E.AB=5cm、AC=2cm,则△ADE的周长=______________________
10.在△ABC中,∠C=117°,AB边上的垂直平分线交BC于D,AD分∠CAB为两部分.∠CAD∶∠DAB=3∶2,则∠B=__________
三、计算题(共5小题)
1.分解 (5分)
2.计算 (5分)
3.化简再求值 其中x=-2(5分)
4.解方程 (5分)
5.为了缓解交通堵塞现象,决定修一条从市中心到飞机场的轻轨铁路.为了使工程提前3个月完成,需将原计划的工作效率提高12%,问原计划此工程需要多少个月?(6分)
四、证明计算及作图(共4小题)
1.如图已知:在△ABC中,AB=AC,∠A=120°,DF垂直平分AB交AB于F交BC于D,求证: (5分)
2.如图C为AB上一点,且△AMC、△CNB为等边三角形,求证AN=BM(6分)
3.求作一点P,使PC=PD且使点P到∠AOB两边的距离相等.(不写作法)(5分)
4.如图点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.(8分)
求证(1)AE=CF
(2)AE‖CF
(3)∠AFE=∠CEF
参考答案
一、选择(每小题3分共10小题)
1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.C 9.B 10.C
二、填空(每小题2分共10小题)
1.2 2. 3.1 4.5 5.
6.7 7.80° 50° 50° 8.2 9.7cm 10.18°
三、计算题(共5小题)
1.解:
2.解:
.
3.解:
当 时
原式的值 .
4.解:
.
检验:x=4是原方程之根.
5.设原计划此工程需要x月
检验 是原方程的根.
答:原计划28个月完成.
四、证明计算及作图(共4小题)
1.证:连AD.
∵ ∠A=120°
AB=AC
∴ ∠B=∠C=30°
∵ FD⊥平分AB.
∴ BD=AD
∠B=∠1=30°
∠DAC=90°
∵ 在Rt△ADC中
∠C=30°
∴
即
2.证:∵ C点在AB上
A、B、C在一直线上.
∠1+∠3+∠2=180°
∵ △AMC和△CNB为等边三角形
∴ ∠1=∠2=60°
即∠3=60°
AC=MC,
CN=CB
在△MCB和△ACN中
∵
∴ △MCB≌△ACN(SAS)
∴ AN=MB.
3.
4.证① 在△ABF和△DCE中
∵
∴ △ABF≌△DCE(SAS)
∴ AF=CE,∠1=∠2
∵ B、F、E、D在一直线上
∴ ∠3=∠4(同角的补角相等)
即∠AFE=∠CEF
② 在△AFE和△CEF中
∵
∴ △AFE≌△CEF(SAS)
∴ AE=CF ∠5=∠6
∵ ∠5=∠6
∴ AE‖CF.
③ ∵ ∠3=∠4
即∠AFE=∠CEF
希望有用吧
急求200道初二数学计算题要有答案
一、填空题 1、因式分解: 9x2-1=_________________, 4x2-4x+1=_________________. a4-b4=_________________, an+2-an=____________________ 2、多项式x2+mx+36是一个完全平方式,则m=_____________. 3、多项式x2+ax+b可以因式分解成(x-1)(x+3)则a=_______, b=______. 4、如果x=3时,多项式x3-4x2-9x+m的值为0,则m=_________,多项式因式分解的结果为_______________________. 二、选择题 1、下列从左到右的变形,属于因式分解的是……………………………………( ) (A)(a+3)(a-3)=a2-9 (B)4a2+4a+3=(2a+1)2+2 (C)x2-1=(x+1)(x-1) (D)-2m(m2-3m+1)=-2m3+6m2-2m 2、下列各式,能用完全平方因式分解的多项式的个数为………………………( ) ①-a2-b2+2ab ②a2-ab+b2 ③a2-a+14 ④4a2+4a-1 (A)1个 (B)2个 (C)3个 (D)4个 3、用因式分解多项式3xy+6y2-x-2y时,分解正确的个数………………… ( ) ①3xy+6y2-x-2y =(3xy-x)+(6y2-2y) ②3xy+6y2-x-2y=(3xy+6y2)-(x+2y) ③3xy+6y2-x-2y=(3xy-2y)+(6y2-x) (A)0个 (B)1个 (C)2个 (D)3个 三、选择题 )1.下列多项式中何者含有2x+3的因式 (1)2x3+3 (2)4x2-9 (3)6x2-11x+3 (4)2x2+x+3 ( )2.下列何者是2x2-11x-21的因式? (1)(x-6) (2)(x+7) (3)(2x-3) (4)(2x+3) ( )3.下列何者为甲×丙+乙×丙的因式 (1)甲+乙×丙 (2)甲+乙 (3)甲+丙 (4)丙+乙。 ( )4.下列各式中,何者不是x2-4的因式? (1)x+2 (2)x-2 (3)x2-4 (4)x2。 ( )5.a2-b2的因式不可能是下列那一个? (1)a2+b2 (2)a+b (3)a-b (4)a2-b2。 ( )6.下列何者错误? (1)(-a+b)2=a2-2ab+b2 (2)(a-b)(a+b)=a2-b2 (3)(a-b)2=a2-2ab-b2 (4)(4+3)2=42+8×3+32。 ( )7.下列各式中,何者是2x2-11x-21的因式? (1)2x-3 (2)x+7 (3)x-7 (4)2x+7。 ( )8.下列何者为2x2+3x+1与4x2-4x-3的公因式? (1)x+1 (2)x+2 (3)2x-3 (4)2x+1。 ( )9.因式分解(a+2)2-3(a+2)= (1)(a+2)(a-3) (2)(a+2)(a+3) (3)(a+2)(a+1) (4)(a+2)(a-1)。 ( )10.下列何者正确? (1)a2-b2=(a-b)2 (2)a2-2ab+b2=(a+b)(a-b) (3)a2+2ab+b2=(a+b)2 (4)a2+b2=(a+b)(a-b)。 ( )11.因式分解9x2-1= (1)(9x+1)(9x-1) (2)(3x-1)2 (3)(3x+1)(3x-1) (4)(9x-1)2。 ( )12.若5x2-7x-6=(5x+a)(x+b),则 (1)a=-3 (2)b=-2 (3)ab=6 (4)a+b=5。 ( )13.x2+mx+n=(x+a)(x+b),若m<0,n>0,则 (1)a>0,b>0 (2)a<0,b<0 (3)a>0,b<0 (4)a<0,b>0。 ( )14.找出下列何者是15x2+x-2的因式? (1)5x-2 (2)15x+2 (3)3x-1 (4)3x+1。 ( )15.下列何者是(x-4)(x-5)-42的因式? (1)x-2 (2)x+11 (3)x-11 (4)x+3。 ( )16.若6x2-25x+4=(ax+b)(cx+d)则下列何者正确? (1)abcd=25 (2)a+b+c+d=24 (3)若a=1,则必cd=6 (4)若a=1,则必d=-1。 ( )17.4a2-1等於下列何式? (1)(4a-1)2 (2)(2a-1)2 (3)(4a+1)(4a-1) (4)(2a+1)(2a-1)。 ( )18.x2+y2等於 (1)(x+y)2 (2)(x+y)2+2xy (3)(x-y)2+2xy (4)(x-y)2-2xy。 ( )19.你能利用2片边长xcm的正方形,9片长宽各为x,1cm的长方形和4片边长1cm的正方形,拼出长为(x+4)cm的长方形,其宽为 (1)(2x+1)cm (2)(x+3)cm (3)(2x+4)cm (4)(2x+2)cm。 ( )20.下列何式是2x2+3x+1与4x2-4x-3的因式? (1)2x-1 (2)2x+1 (3)2x-3 (4)x+1。 ( )21.下列那一个式子不是9x2-25的因式? (1)3x+5 (2)3x-5 (3)9x+5 (4)9x2-25。 ( )22.因式分解x2-3x+2=(x+a)(a+b)则 (1)a+b=3 (2)a>0,b<0 (3)ab=-2 (4)a>0,b>0。 ( )23.下列各二次式,何者有因式x-1? (1)x2+5x+6 (2)x2-5x-6 (3)x2+5x-6 (4)x2-5x+6。 ( )24.(-x+y)2等於 (1)-(x-y)2 (2)(x-y)2 (3)(x+y)2 (4)(-x-y)2。 ( )25.若x+y=-5,x-y=15 ,则x2-y2= (1)-5 (2)-1 (3)-15 (4)1。 ( )26.x2+px+q=(x+a)(x+b),若a<0,b<0,则 (1)p>0 (2)q<0 (3)pq>0 (4)q>0。 ( )27.若(x-5)2-(x-5)-12可分解为(x+a)(x+b),则a+b等於 (1)-11 (2)9 (3)11 (4)-9。 ( )28.ax-cx-by+cy+bx-ay可分解为下列何式? (1)(x-y)(a-b-c) (2)(x+y)(a+b-c) (3)(x-y)(a-b+c) (4)(x-y)(a+b-c)。 ( )29.下列何者正确? (1)x2+2ax+x=x(x+2a) (2)2x2-8=x2-4=(x-2)(x+2) (3)36x2-84x+49=(7-6x)2 (4)x2-6=(x-2)(x+3)。 四、填充题 1.若2x3+3x2+mx+1为x+1的倍式,则m= 2.因式分解3a3b2c-6a2b2c2+9ab2c3= 3.因式分解xy+6-2x-3y= 4.因式分解x2(x-y)+y2(y-x)= 5.因式分解2x2-(a-2b)x-ab= 6.因式分解a4-9a2b2= 7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4= 8.因式分解ab(x2-y2)+xy(a2-b2)= 9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)= 10.因式分解a2-a-b2-b= 11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2= 12.因式分解(a+3)2-6(a+3)= 13.因式分解(x+1)2(x+2)-(x+1)(x+2)2= 14.若2×4×(32+1)×(34+1)×(38+1)×(316+1)=3n-1,求n= 。 15.利用平方差公式,求标准分解式4891= 。 16.2x+1是不是4x2+5x-1的因式?答: 。 17.若6x2-7x+m是2x-3的倍式,则m= 18.x2+2x+1与x2-1的公因式为 。 19.若x+2是x2+kx-8的因式,求k= 。 20.若4x2+8x+3是2x+1的倍式请因式分解4x2+8x+3= 。 21.2x+1是4x2+8x+3的因式,请因式分解4x2+8x+3= 。 22.(1)x+2 (2)x+4 (3)x+6 (4)x-6 (5)x2+2x3+24 上列何者x2-2x-24的因式 (全对才给分) 23.因式分解下列各式: (1)abc+ab-4a= 。 (2)16x2-81= 。 (3)9x2-30x+25= 。 (4)x2-7x-30= 。 24.若x2+ax-12=(x+b)(x-2),其中a、b均为整数,则ab= 。 25.请将适当的数填入空格中:x2-16x+ =(x- )2。 26.因式分解下列各式: (1)xy-xz+x= ;(2)6(x+1)-y(x+1)= (3)x2-5x-px+5p= ;(4)15x2-11x-14= 27.设7x2-19x-6=(7x+a)(bx-3),且a,b为整数,则2a+b= 28.利用乘法公式展开99982-4= 。 29.计算(1.99)2-4×1.99+4之值为 。 30.若x2+ax-12可分解为(x+6)(x+b),且a,b为整数,则a+b= 。 31.已知9x2-mx+25=(3x-n)2,且n为正整数,则m+n= 。 32.若2x3+11x2+18x+9=(x+1)(ax+3)(x+b),则a-b= 。 33.2992-3992= 34.填入适当的数使其能成为完全平方式4x2-20x+ 。 35.因式分解x2-25= 。 36.因式分解x2-20x+100= 。 37.因式分解x2+4x+3= 。 38.因式分解4x2-12x+5= 。 39.因式分解下列各式: (1)3ax2-6ax= 。 (2)x(x+2)-x= 。 (3)x2-4x-ax+4a= 。 (4)25x2-49= 。 (5)36x2-60x+25= 。 (6)4x2+12x+9= 。 (7)x2-9x+18= 。 (8)2x2-5x-3= 。 (9)12x2-50x+8= 。 40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。 41.因式分解2ax2-3x+2ax-3= 。 42.因式分解9x2-66x+121= 。 43.因式分解8-2x2= 。 44.因式分解x2-x+14 = 。 45.因式分解9x2-30x+25= 。 46.因式分解-20x2+9x+20= 。 47.因式分解12x2-29x+15= 。 48.因式分解36x2+39x+9= 。 49.因式分解21x2-31x-22= 。 50.因式分解9x4-35x2-4= 。 51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。 52.因式分解2ax2-3x+2ax-3= 。 53.因式分解x(y+2)-x-y-1= 。 54.因式分解(x2-3x)+(x-3)2= 。 55.因式分解9x2-66x+121= 。 56.因式分解8-2x2= 。 57.因式分解x4-1= 。 58.因式分解x2+4x-xy-2y+4= 。 59.因式分解4x2-12x+5= 。 60.因式分解21x2-31x-22= 。 61.因式分解4x2+4xy+y2-4x-2y-3= 。 62.因式分解9x5-35x3-4x= 。 63.因式分解下列各式: (1)3x2-6x= 。 (2)49x2-25= 。 (3)6x2-13x+5= 。 (4)x2+2-3x= 。 (5)12x2-23x-24= 。 (6)(x+6)(x-6)-(x-6)= 。 (7)3(x+2)(x-5)-(x+2)(x-3)= 。 (8)9x2+42x+49= 。 64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。 65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。 66.求下列各式的和或差或积或商。 (1)(6512 )2-(3412 )2= 。 (2)(7913 )2+2×7913 ×23 +49 = 。 (3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。 67.因式分解下列各式: (1)(x+2)-2(x+2)2= 。 (2)36x2+39x+9= 。 (3)2x2+ax-6x-3a= 。 (4)22x2-31x-21= 。 68.利用平方差,和的平方或差的平方公式,填填看 (1)49x2-1=( +1)( -1) (2)x2+26x+ =(x+ )2 (3)x2-20x+ =(x- )2 (4)25x2-49y2=(5x+ )(5x- ) (5) -66x+121=( -11)2 69.利用公式求下列各式的值 (1)求5992-4992= (2)求(7512 )2-(2412 )2= (3)求392+39×22+112= (4)求172-34×5+52= (5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2= 70.因式分解3ax2-6ax= 。 71.因式分解(x+1)x-5x= 。 72.因式分解(2x+1)(x-3)-(2x+1)(x-5)= 73.因式分解xy+2x-5y-10= 74.因式分解x2y2-x2-y2-6xy+4= 。 五、计算题 1.因式分解x3+2x2+2x+1 2.因式分解a2b2-a2-b2+1 3.试用除法判别15x2+x-6是不是3x+2的倍式。 4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式) (2)如果是,请因式分解6x2+x-2。 5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值? 6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。 7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。 8.设6x2-13x+k为3x-2的倍式,求k之值。 9.判别3x是不是x2之因式?(要说明理由) 10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。 11.(1)因式分解ab-cd+ad-bc (2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。 12.利用平方差公式求1992-992=? 13.利用乘法公式求(6712 )2-(3212 )2=? 14.因式分解下列各式: (1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121 15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9 (1)方法1: (2)方法2: 16.因式分解下列各式: (1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2 17.因式分解 (1)8x2-18 (2)x2-(a-b)x-ab 18.因式分解下列各式 (1)9x4+35x2-4 (2)x2-y2-2yz-z2 (3)a(b2-c2)-c(a2-b2) 19.因式分解(2x+1)(x+1)+(2x+1)(x-3) 20.因式分解39x2-38x+8 21.利用因式分解求(6512 )2-(3412 )2之值 22.因式分解a(b2-c2)-c(a2-b2) 23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值 24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2 25.因式分解xy2-2xy-3x-y2-2y-1 26.因式分解4x2-6ax+18a2 27.因式分解20a3bc-9a2b2c-20ab3c 28.因式分解2ax2-5x+2ax-5 29.因式分解4x3+4x2-25x-25 30.因式分解(1-xy)2-(y-x)2 31.因式分解 (1)mx2-m2-x+1 (2)a2-2ab+b2-1 32.因式分解下列各式 (1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2 33.因式分解:xy2-2xy-3x-y2-2y-1 34.因式分解y2(x-y)+z2(y-x) 35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根 36.(1)因式分解x2+x+y2-y-2xy=? (2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
参考资料: http://zhidao.baidu.com/question/72475415.html