×

初中数学题初三

初中数学题初三(初中数学 初三 数学题 急急)

jnlyseo998998 jnlyseo998998 发表于2023-01-08 08:50:53 浏览53 评论0

抢沙发发表评论

本文目录

初中数学 初三 数学题 急急

照片面积=29*22=638cm^2,
镜框面积=159.5cm^2,
设宽度=xcm,
镜框面积=(29*2+22*2+4x)*x=159.5,
4x^2+102x-159.5=0,
x≈1.5cm.

初中数学圆--经典练习题(含答案)

对于已经步入初三的同学们,掌握好有关于圆的知识内容,对于后面接触弧、扇形、椭圆等相关知识内容都有一定的帮助,一起来看看小编帮大家整理的有关于初中数学圆知识点的内容有哪些吧。

初三数学圆的知识点总结归纳

圆的定义:

(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。

(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。

圆心:

(1)如定义(1)中,该定点为圆心

(2)如定义(2)中,绕的那一端的端点为圆心。

(3)圆任意两条对称轴的交点为圆心。

(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示

直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。

圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

圆的周长与直径的比值叫做圆周率。圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。

圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

周长计算公式

1.、已知直径:C=πd

2、已知半径:C=2πr

3、已知周长:D=c\π

4、圆周长的一半:1\2周长(曲线)

5、半圆的长:1\2周长+直径

面积计算公式:

1、已知半径:S=πr平方

2、已知直径:S=π(d\2)平方

3、已知周长:S=π(c\2π)平方

点、直线、圆和圆的位置关系

1、点和圆的位置关系

①点在圆内《=》点到圆心的距离小于半径

②点在圆上《=》点到圆心的距离等于半径

③点在圆外《=》点到圆心的距离大于半径

2.过三点的圆不在同一直线上的三个点确定一个圆。

3.外接圆和外心经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心。

4.直线和圆的位置关系

相交:直线和圆有两个公共点叫这条直线和圆相交,这条直线叫做圆的割线。

相切:直线和圆有一个公共点叫这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。

相离:直线和圆没有公共点叫这条直线和圆相离。

5.直线和圆位置关系的性质和判定

如果⊙O的半径为r,圆心O到直线l的距离为d,那么

①直线l和⊙O相交《=》d《r;《 p=““》《/r;《》

②直线l和⊙O相切《=》d=r;

③直线l和⊙O相离《=》d》r。

圆和圆定义:

两个圆没有公共点且每个圆的点都在另一个圆的外部时,叫做这两个圆的外离。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做两个圆的外切。

两个圆有两个交点,叫做两个圆的相交。

两个圆有唯一的公共点且除了这个公共点外,每个圆上的点都在另一个圆的内部,叫做两个圆的内切。

两个圆没有公共点且每个圆的点都在另一个圆的内部时,叫做这两个圆的内含。

原理:圆心距和半径的数量关系:

两圆外离《=》d>R+r两圆外切《=》d=R+r两圆相交《=》R-r《d=r)《/d

两圆内切《=》d=R-r(R》r)两圆内含《=》dr)

正多边形和圆

1、正多边形的概念:各边相等,各角也相等的多边形叫做正多边形。

2、正多边形与圆的关系:

(1)将一个圆n(n≥3)等分(可以借助量角器),依次连结各等分点所得的多边形是这个圆的内接正多边形。

(2)这个圆是这个正多边形的外接圆。

3、正多边形的有关概念:

(1)正多边形的中心——正多边形的外接圆的圆心。

(2)正多边形的半径——正多边形的外接圆的半径。

(3)正多边形的边心距——正多边形中心到正多边形各边的距离。

(4)正多边形的中心角——正多边形每一边所对的外接圆的圆心角。

4、正多边形性质:

(1)任何正多边形都有一个外接圆。

(2)正多边形都是轴对称图形,当边数是偶数时,它又是中心对称图形,正n边形的对称轴有n条。(3)边数相同的正多边形相似。

练习题

1、已知:弦AB把圆周分成1:5的两部分,这弦AB所对应的圆心角的度数为________。

2、已知:⊙O中的半径为4cm,弦AB所对的劣弧为圆的1/3,则弦AB的长为_______cm, AB的弦心距为_____cm。

3、如图,在⊙O中,AB∥CD,⌒AC的度数为450,则∠COD的度数为_______。

4、如图,在三角形ABC中,∠A=70°,⊙O截△ABC的三边所得的弦长相等,则 ∠BOC=( )。

A.140° B.135° C.130° D.125°

5、下列语句中,正确的有( )

(1)相等的圆心角所对的弧相等;

(2)平分弦的直径垂直于弦;

(3)长度相等的两条弧是等弧;

(4) 圆是轴对称图形,任何一条直径都是对称轴

A.0个 B.1个 C.2个 D.3个

6、已知:在直径是10的⊙O中,⌒AB的度数是60°,求弦AB的弦心距。

7、已知:如图,⊙O中,AB是直径,CO⊥AB,D是CO的中点,DE∥AB, 求证:⌒AB=2⌒AE

测试题

一道初中数学概率题(初三)

我来跟你分析一下:
1.题目说的意思你没有完全弄明白。题目说“求出两次取到的恰好是写有“欢欢”,“迎迎”(不考虑顺序)的概率.”是说最后取到的结果是“欢欢”,“迎迎”和取到的“迎迎”、“欢欢”是一样的。
2.取小球的时候,先取欢欢还是先取迎迎这两个是不同的结果,应该予以分别对待。

初三数学中考试题

2009年广州市初中毕业生学业考试
数 学
满分150分,考试时间120分钟
一、选择题(本大题共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1. 将图1所示的图案通过平移后可以得到的图案是( A )

2. 如图2,AB‖CD,直线 分别与AB、CD相交,若∠1=130°,则∠2=( C )
(A)40° (B)50° (C)130° (D)140°
3. 实数 、 在数轴上的位置如图3所示,则 与 的大小关系是( C )
(A) (B)
(C) (D)无法确定
4. 二次函数 的最小值是( A )
(A)2 (B)1 (C)-1 (D)-2
5. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D )
(A)这一天中最高气温是24℃
(B)这一天中最高气温与最低气温的差为16℃
(C)这一天中2时至14时之间的气温在逐渐升高
(D)这一天中只有14时至24时之间的气温在逐渐降低
6. 下列运算正确的是( B )
(A) (B)
(C) (D)
7. 下列函数中,自变量 的取值范围是 ≥3的是( D )
(A) (B)
(C) (D)
8. 只用下列正多边形地砖中的一种,能够铺满地面的是( C )
(A)正十边形 (B)正八边形
(C)正六边形 (D)正五边形
9. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( B )
(A) (B) (C) (D)
10. 如图6,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则ΔCEF的周长为( A )
(A)8 (B)9.5 (C)10 (D)11.5
二、填空题(本大题共6小题,每小题3分,满分18分)
11. 已知函数 ,当 =1时, 的值是________2
12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3
13. 绝对值是6的数是________+6,-6
14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略
15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第 个“广”字中的棋子个数是________2n+5

16. 如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4
三、解答题(本大题共9小题,满分102分。解答应写出文字说明、证明过程或演算步骤)
17. (本小题满分9分)
如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。
证明:四边形DECF是平行四边形。
18. (本小题满分10分)
解方程
19.(本小题满分10分)
先化简,再求值: ,其中
20.(本小题满分10分)
如图10,在⊙O中,∠ACB=∠BDC=60°,AC= ,
(1)求∠BAC的度数; (2)求⊙O的周长
21. (本小题满分12分)
有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球。
(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;
(2)求红球恰好被放入②号盒子的概率。
22. (本小题满分12分)
如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。
23. (本小题满分12分)
为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。
(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?
(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?
24.(本小题满分14分)
如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若RtΔGBF的周长为1,求矩形EPHD的面积。
解:(1)易证ΔABF≌ΔADH,所以AF=AH
(2)如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB+BF,即:FH=AG+AE
(3)设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x+y-1,由勾股定理,得
(1-x)2+(1-y)2=( x+y-1)2,
化简得xy=0.5,
所以矩形EPHD的面积为0.5.
25.(本小题满分14分)
如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB= ,得AB=
设A(a,0),B(b,0)
AB=b-a= = ,解得p= ,但p《0,所以p= 。
所以解析式为:
(2)令y=0,解方程得 ,得 ,所以A( ,0),B(2,0),在直角三角形AOC中可求得AC= ,同样可求得BC= ,,显然AC2+BC2=AB2,得三角形ABC是直角三角形。AB为斜边,所以外接圆的直径为AB= ,所以 .
(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组 得D( ,9)
②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A( ,0)代入得AD解析式为y=0.5x+0.25,解方程组 得D( )
综上,所以存在两点:( ,9)或( )。
2009年广州市初中毕业生学业考试
数学试题参考答案
一、选择题:本题考查基础知识和基本运算,每小题3分,满分30分.
题号 1 2 3 4 5 6 7 8 9 10
答案 A C C A D B D C B A
二、填空题:本题考查基础知识和基本运算,每小题3分,满分18分.
11. 2 12. 9.3 13.
14. 如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直
15. 15; 16. 4
三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102分.
17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.
证法1: 分别是边 的中点,
∴ .
同理 .
∴四边形 是平行四边形.
证法2: 分别是边 的中点,
∴ .
为 的中点,
∴ .
∴ .
∴四边形 是平行四边形.
18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分9分.
解:由原方程得 ,
即 ,
即 ,

检验:当x = 3时, .
∴ 是原方程的根.
19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.
解:
=
=
= .
将 代入 ,得:

.
20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分10分.
解:(1) ,
∴ .
(2) ,
∴ .
∴ 是等边三角形.
求 的半径给出以下四种方法:
方法1:连结 并延长交 于点 (如图1).
∵ 是等边三角形,
∴圆心 既是 的外心又是重心,还是垂心.
在 中 , ,
∴ .
∴ ,即 的半径为 .
方法2:连结 、 ,作 交 于点 (如图2).

∴ .
∴ .
∵ ,
∴ 中 .
在 中, ,
∴ ,即 .
∴ ,即 的半径为 .
方法3:连结 、 ,作 交 于点 (如图2).
是等边三角形 的外心,也是 的角平分线的交点,
∴ , .
在 中, ,即 .
∴ .
∴ ,即 的半径为 .
方法4:连结 、 ,作 交 于点 (如图2).
是等边三角形的外心,也是 的角平分线的交点,
∴ , .
在 中,设 ,则 ,
∵ .
∴ .
解得 .
∴ ,即 的半径为 .
∴ 的周长为 ,即 .
21.本小题主要考查概率等基本的概念,考查.满分12分.
(1)解法1:可画树状图如下:
共6种情况.
解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6种.
(2)解:从(1)可知,红球恰好放入2号盒子的可能结果有白红蓝、蓝红白共2种,
所以红球恰好放入2号盒子的概率 .
22. 本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.
解:(1) , ;
(2)解法1:∵直线 经过坐标原点,
∴设所求函数的关系式是 ,
又点 的坐标为(1,2),
∴ ,
∴直线 所对应的函数关系式是 .
解法2:设所求函数的关系式是 ,
则由题意得:

解这个方程组,得
∴直线 所对应的函数关系式是 .
(3)利用直尺和圆规,作线段 关于直线 的对
称图形 ,如图所示.
23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.
解:(1)设启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为 、 台.
根据题意得
解得
∴启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为560台和400台.
(2)I型冰箱政府补贴金额: 元,
II 型冰箱政府补贴金额: 元.
∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:

答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户 元.
24. 本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.
(1)证明1:在 与 中,
∵ , ,
∴ ≌ .
∴ .
证明2:在 中, .
在 中, .
∵ , ,
∴ .
(2)证明1:将 绕点 顺时针旋转 到 的位置.
在 与 中,
∵ , ,

∴ ≌ .
∴ .
∵ ,
∴ .
证明2:延长 至点 ,使 ,连结 .
在 与 中,
∵ , ,
∴ ≌ .
∴ , .
∵ ,
∴ .
∴ .
∴ ≌ .
∴ .
∵ ,
∴ .
(3)设 , ,则 , .( )
在 中, .
∵ 的周长为1,
∴ .
即 .
即 .
整理得 . (*)
求矩形 的面积给出以下两种方法:
方法1:由(*)得 . ①
∴矩形 的面积 ②
将①代入②得

∴矩形 的面积是 .
方法2:由(*)得 ,
∴矩形 的面积
=
=
=
∴矩形 的面积是 .
25. 本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.
解:(1)设点 其中 .
∵抛物线 过点 ,
∴ .
∴ .
∴ .
∵ 抛物线 与 轴交于 、 两点,
∴ 是方程 的两个实根.
求 的值给出以下两种方法:
方法1:由韦达定理得: .
∵ 的面积为 ,
∴ ,即 .
∴ .
∴ .
∵ ,
∴ .
∴ .
解得 .
∵ .
∴ .
∴所求二次函数的关系式为 .
方法2:由求根公式得 .

∵ 的面积为 ,
∴ ,即 .
∴ .
∴ .
解得 .
∵ .
∴ .
∴所求二次函数的关系式为 .
(2)令 ,解得 .
∴ .
在Rt△ 中, ,
在Rt△ 中, ,
∵ ,
∴ .
∴ .
∴ 是直角三角形.
∴ 的外接圆的圆心是斜边 的中点.
∴ 的外接圆的半径 .
∵垂线与 的外接圆有公共点,
∴ .
(3)假设在二次函数 的图象上存在点 ,使得四边形 是直角梯形.
① 若 ,设点 的坐标为 , ,
过 作 轴,垂足为 , 如图1所示.
求点 的坐标给出以下两种方法:
方法1:在Rt△ 中,

在Rt△ 中, ,
∵ ,
∴ .
∴ .

解得 或 .
∵ ,
∴ ,此时点 的坐标为 .
而 ,因此当 时在抛物线 上存在点 ,使得四边形 是直角梯形.
方法2:在Rt△ 与Rt△ 中, ,
∴Rt△ ∽ Rt△ .
∴ .
∴ .
以下同方法1.
② 若 ,设点 的坐标为 , ,
过 作 轴,垂足为 , 如图2所示,………5分
在Rt△ 中, ,
在Rt△ 中, ,
∵ ,
∴ .
∴ .

解得 或 .
∵ ,
∴ ,此时点 的坐标为 .
此时 ,因此当 时,在抛物线 上存在点 ,使得四边形 是直角梯形.
综上所述,在抛物线 上存在点 ,使得四边形 是直角梯形,并且点 的坐标为 或 .

初中(初三)数学问题

解:
AD‖BC,AB=DC 则梯形ABCD为等腰梯形。
则角BAD=角ADC若MB=MC 且AB=DC
则三角形BAM全等于三角形CDM
则AM=DM
即M为AD中点时 MB=MC
解答:AD=CF
此题注意给你讲讲方法思路。连接CE。证明三角形CFE与三角形CBE全等(AAS)
注意此题中的垂直平行关系。垂直得出角CFE=角CBE=90°平行得出角DCE=角CEB .再用边的关系转化成角相等。
即DE=AB=DC 得出角DCE=角DEC(等边等角),进行等量代换。
最后加上公共边CE就根据角角边得出三角形CFE与三角形CBE全等,即得出AD=CF的结论。

初中数学难题,初三数学,20题求大神帮忙

问题超难,可以说至少是两个超难大题合并而来,

Glitter莆田火老师给出了答案,结果是正确的,没有采纳,遗憾,不过他的解答用了三角函数,甚至三倍角公式,可能初中生不解,

下面这个解答是纯几何的,

解答中的第一部分,关于由三角形两倍角关系求三边关系拓展为三倍角求三边关系,这就是超难度大题(其实两倍角已经有难度了),这还仅仅是本题解答中的一小部分,曾经在做相似形的课件时,本人把这个推广用作思考题,解答中把 AE 的长度 4 用字母 d 表示,就是要把这个三边关系亮出来,解答中的第二部分,找出线段关系列方程不算太难,但其中的计算太繁杂,以致占了整个解答的一半以上,其中还略去了许多计算步骤,第三部分解方程组,可以说是高次方程组啊,化简到最后还是三次方程,这道题花了我整整两天时间,难啊。

初中 数学 初三的第二题

解法一:由题设.AB是圆O的直径,D是圆O上的一点,得∠ADB=90°,

BC是圆O的切线,得∠OBC=90°.

AD∥CO,得∠DAB=∠COB.如图

∴直角三角形ADC∽直角三角形OBC

OB/AD=OC/AB    ①

在直角三角形OBC中

OB=AB/2=2/2=1,

BC=√2,

由勾股定理得

OC=√(OB²+BC²)=√(1+2)=√3.

把OB=1,BC=√2,OC=√3代入①式得

1/AD=√3/2.

∴AD=2√3/3. 

 

解法二:设BD与OC交点为G.如图

由题设.AB是圆O的直径,D是圆O上的一点,得∠ADB=90°,

BC是圆O的切线,得∠OBC=90°.

AD∥CO,得∠DAB=∠COB,∠ADB=∠OGB=90°.

∴△ADB、△OGB、△OBC都是直角三角形。

在直角三角形OBC中

∵OB=AB/2=2/2=1,

BC=√2,

由勾股定理得

OC=√(OB²+BC²)=√(1+2)=√3.

∵直角三角形OBC的面积=OB×BC÷2;

直角三角形OBC的面积=OC×BG÷2;

∴OB×BC÷2=OC×BG÷2

OB×BC=OC×BG    (*)

把OB=1,BC=√2,OC=√3代入(*)式得

1×√2=√3×BG

∴BG=√6/3.

在直角三角形OBG中

∵OB=1,

BG=√6/3.

由勾股定理得

OG=√(OB²-OG²)=√(1/3)=√3/3.

∵AD∥OG,

O是AB的中点,

∴OG是△ABD的中位线.

由中位线定理得

OE=AD/2

∴AD=2OE=2√3/3. 

初中初三数学题

(1)6734是“一生一世”数,定义是一个多位正整数,如果它既能被13整除,又能被14整除,那么我们称这样的数为“一生一世”数(数字1314的谐音). 例如:正整数364,,,则364是“一生一世”数.6734能被13整除,也能被14整除
(2)设任意 一个位数大于三位的“一生一世数”的末三位数用n表示,前面的数用m表示.由题意可得这个“一生一世数” 为1000m+n=182k(k为整数),则有n=182k-1000m,所以将其末尾三位数截去,所截的末尾三位数与截去后剩下的数之差为n-m= 182k-1000m-m=91(2k-11m).因为k是整数,m是整数,所以2k-11m是整数,由此可得:91(2k-11m)能被91整除,即任意一个位数大于三位的“一生一世”数,将其末尾三位数截去,所截的末尾三位数与截去后剩下的数之差一定能被91整除;

初中数学题,初三,救命,快

设扇形与BC相切于点E,连AE,则AE⊥BC,

因为∠C=90°=∠D

所以四边形ADCE是矩形

所以DE=AD=4,

在直角三角形ABE中,BE=BC=CE=6-4=2

所以BE=AB/2

所以∠BAE=30°,∠DAB=90+30=120°

由勾股定理,得,AE²=AB²-BE²=16-4=12

所以扇形面积=120πAE²/360=4π