本文目录
中国大陆地震构造及现今地球动力学若干问题
叶洪 陈国光 郝重涛 周庆
(中国地震局地质研究所,北京 100029)
摘要 在现今地球动力学体制下,中国大陆板块内部的构造活动表现为6个各具特色的构造运动及内部变形的一级块体(青藏块体、甘新块体、东北块体、华北块体、华南块体及东南沿海块体。中国大陆地震活动与现代构造运动受制于特提斯-喜马拉雅构造带及西太平洋构造带两方面的影响。中国大陆西部现代构造运动的力源主要来自印度板块与欧亚板块的碰撞,而中国大陆东南地区及东北地区则主要分别受菲律宾海板块及太平洋板块的影响。华北的情况比较复杂,太行山以西的华北西部以特提斯-喜马拉雅构造带的影响为主,郯庐带以东的华北东部以西太平洋构造带影响为主,介于以上两者之间的华北中部地区可能是两种影响混杂的过渡地带。大陆板内各个块体之间的边界在很多段落上表现出弥散性变形的特点,它们之间的相对运动幅度是有限的,这些都与岩石圈大板块之间的相对运动及变形方式有很大不同。在上述块体内部,应变能的释放主要沿着原有的构造软弱带进行。在中国大陆东部的各个块体内古裂谷或被动大陆边缘的地壳颈化带是最重要的构造软弱带。而在中国大陆西部,一些古生代以来褶皱带的主边界断裂或主中央断裂仍是当地主要的构造软弱带。大地震往往沿着上述构造软弱带成带状分布。板内大地震复发间隔的统计结果表明,中国大陆板内块体运动及变形的速率比板块边界要小一到两个数量级,这对板内块体运动学模型是一个重要的限定。
关键词 地震构造 地球动力学 中国大陆
1 引言
从本世纪初阿尔冈(E.Argand)最早提出喜马拉雅大陆碰撞的设想算起,中国大陆地球动力学问题的研究已经经历了中、外学者好几代人的努力。到目前为止,这仍是世界上地球动力学研究的一块热土。各种科学基金及国际协作组织争相立项,各国地球科学家纷至沓来,都想在中国大陆内部地球动力学的研究中占有一席之地。
中国大陆的这一科学魅力首先来自于它在全球构造格架中所占的独特的构造位置(图1)。从全球构造的角度看,中国大陆正好处在目前世界上最大的两条全球规模巨型挤压构造带:特提斯-喜马拉雅构造带与环太平洋构造带的接合部位。特提斯-喜马拉雅构造带代表着全球规模南、北大陆的聚敛与碰撞,它横贯欧、亚、非三洲自西向东延伸,在中国大陆内部东经104°附近嘎然终止。这一巨型构造在这里的突然收尾,显然是因为受到了近南北向西太平洋构造带的阻挡,在这里它的巨大的近南北向压缩变形必须以某种方式与西太平洋边缘近东西向板块聚敛运动影响下的中国大陆东部构造变形相协调。
图1 中国及邻区现代板块及板内运动示意图
中国大陆地质的另一个重要特点是它本身的复杂拼合结构。中国大陆既不同于典型的北大陆地块(如西西伯利亚、俄罗斯),也不同于典型的南大陆地块(如非洲、澳大利亚、南美等)。它是由部分北大陆碎块、部分南大陆碎块以及若干位于南、北大陆之间的小陆块拼合而成的。在漫长的拼合历史过程中,围绕着相对比较刚性的古陆块形成了大量相对比较韧性的不同年龄褶皱带。
中国大陆基底这种软硬相间的拼合结构,加上上述两个超级构造动力学系统在这里的强烈对抗与相互协调,必然使其现代构造运动及变形表现出独特的复杂性及多样性。中国大陆内部一系列令世人瞩目的现今地球动力学现象就是在这样的构造背景下发生的。例如:青藏高原的快速隆升、缩短、地壳增厚及向东挤出;天山、阿尔泰山的再生隆起与塔里木、准噶尔盆地边缘的快速沉降;华北一系列新生代裂谷盆地的拉开与迁移;华南地块的持续缓慢隆升及东移;菲律宾海板块与欧亚板块在台湾东部斜向碰撞及其在中国东南沿海引起的挤压剪切变形等,这些都与在现今地球动力学体制下中国大陆内部软硬相间块体间的相对运动有关。这些热点课题的研究不仅具有区域性意义,而且对于认识整个地球大陆岩石圈构造行为及变形机制具有普遍意义。
地震构造分析历来是研究现今地球动力学的一个重要途径,从构造地质学的角度来看,地震就是岩石圈构造变形过程中的破裂-错动事件。目前已有日趋成熟的地震地质学及地球物理学方法可对地震与构造的关系进行系统研究,包括各次地震的构造力学背景、震源破裂过程以及地震活动在最近地质历史时期的时空分布规律等。这些研究成果对认识大陆内部现今地球动力学过程,特别是大陆内部块体相对运动及块体内部变形无疑具有十分重要的意义。
近十多年来,配合联合国国际减灾10年计划,我国在地震区划、重大工程及城市地震危险性分析等方面开展了广泛的工作,这些工作涉及到地震构造方面的一系列基础研究。由此产生的大量研究成果,是我们进一步认识中国大陆现今地球动力学过程的新的基础。在本文中,作者想应用近年来在地震区划及工程地震工作中积累与收集到的各种地震活动性、震源机制、古地震、大地震地表破裂及形变带等资料,对中国大陆地震构造特征作一次再分析,在此基础上,从地震构造的侧面对中国大陆现今地球动力学研究中大家关心的某些问题作概要的讨论。
2 中国地震构造分区及大陆板内块体
地震的空间分布曾是确定现代岩石圈板块边界的重要依据,同样,大陆板块内部现代构造运动的块体性,在地震的空间分布上也有相应的反映。但是,由于板内地震分布的弥散性,情况比较复杂,研究方法也应有所不同。对于岩石圈板块,一般根据巨型地震带的展布,就可以相当明确地划分板块边界,而对于板内块体,除了需要考虑地震空间分布外,还需要更多地从地震构造的区域特点上去进行分析,也就是首先需进行地震构造分区。
根据地震空间分布及地震构造的区域性特点。我们将中国划分为以下10个地震构造区(图2):甘新地震构造区、青藏地震构造区、喜马拉雅地震构造区、东北地震构造区、华北地震构造区、华南地震构造区、东南沿海地震构造区、台湾中西部地震构造区、台湾东部地震构造区、南海地震构造区。
上述10个地震构造区中,有两个地震构造区,即喜马拉雅地震构造区及台湾东部地震构造区分别与喜马拉雅板块碰撞带及台湾东部板块碰撞带相对应。另有两个地震构造区,即台湾中西部地震构造区及南海地震构造区,可看作是板缘及板内构造区的过渡。其余的6个地震构造区则具有板内地震构造区的性质。
将这6个板内地震构造区的位置与前寒武纪结晶基底的分布进行对比,可以看出,上述板内地震构造区大多都是以一两个前寒武纪古陆块为核心,古陆地之外,一般围绕着古生代以来的褶皱带。例如:华北地震构造区是以著名的中朝地台为核心的;东北地震区以松嫩地块为核心,周边为古生代褶皱带;华南地震构造区以扬子地台西部为核心,东侧围绕有古生代褶皱带;东南沿海地震构造区大致以华夏古陆块为核心;甘新地震构造区由塔里木地台、准噶尔地块以及发育其间的古生代褶皱带组成;青藏地震构造区的情况比较特殊,它主要是由古生代以来各个时代的褶皱带组成,但其中夹杂着一系列较小的古陆块,如:柴达木地块、羌塘地块、冈底斯地块、松潘-碧口地块等。上述各个地震构造区具有各自独特的现代构造应力场特征、地壳变形和地震能量释放方式以及块体运动方向。因此应被看作是在现代构造运动体制下中国大陆板内的一级块体。
图2 中国震中分布及地震构造分区
Ⅰ—甘新一级地震构造区;Ⅱ—青藏一级地震构造区;Ⅲ—喜马拉雅地震构造区;Ⅳ—东北一级地震构造区;Ⅴ—华北一级地震构造区;Ⅵ—华南一级地震构造区;Ⅶ—东南沿海一级地震构造区;Ⅷ—台湾中西部地震构造区;Ⅸ—台湾东部地震构造区;Ⅹ—南海地震构造区
这些大陆板内块体的边界一般沿袭先存的断裂带或古陆块缝合线发育,但并不一定与前期构造单元的边界完全吻合。
与板块边界的情况不同,板内块体边界的地震活动性在许多段落上表现出明显的弥散性,地震活动的强度也很不均匀。依据地震活动性的强度及分布特点可以将板内一级块体的边界分为三种类型:
(1)线性快速运动边界。例如青藏块体北边界,沿着阿尔金断裂、祁连山山前断裂发生大规模走滑运动,地震密集分布,这类板内块体边界,类似于板块边界,边界两侧块体间的相对运动速率较大,最大可达到1cm/a左右的量级。
(2)弥散型运动边界。例如青藏块体东缘及华北块体与华南块体边界的西段,地震沿着多条断裂呈宽带状分布,块体间的相对运动,总体来说可能有相当大的幅度,但位移不是沿着一、两条主干断裂发生的,而是通过有相当宽度的弥散型变形(distributed deformation)来实现的。
(3)微弱运动边界。例如华北块体与东北块体的边界,华北块体与华南块体边界的东段,华南块体与东南沿海块体之间的边界,地震活动性不强,块体间的相对运动微弱。
板内块体边界地震活动的这些特征说明大陆板块内部块体的相对运动与板块间的运动相比,在活动强度与方式上均有很大差别。
3 中国大陆板内一级块体运动模型
在现今地球动力学体制下,中国大陆内部的各个板内块体,都以各自不同的方式进行着相对运动及内部变形调整。地震的震源机制解及大地震所产生的地表破裂带为研究大陆内部现代构造应力场及块体构造运动模型提供了重要依据(图3、图4)。根据我国大量地震震源机制解及50多个大地震的地表破裂带,我们对大陆内部块体的现代构造运动得到如下认识:
中国西部受印度板块推挤向北运动,总的来说表现为近南北方向的地壳压缩变形并相对于中国东部向北作右旋扭动。其南部的青藏块体内主要是由古生代以来各个时代的褶皱带组成。虽然内部及边缘有小块古陆块卷入,但总的来说比较韧性,因此,内部变形调整量较大,整个块体发生强烈压缩变形,地壳加厚,地面隆升。由于它处在特提斯-喜马拉雅构造带的尾部,南北向挤压具有明显的不对称性,其西侧的挤压强于东侧的挤压,造成青藏块体在向北运动过程中同时向东呈喇叭型挤出,其北部向北东东方向运动,其南部向南东东方向运动。位于青藏地块以北的甘新块体主要由刚性较强的古陆块组成,在古陆块之间夹持着相对比较韧性的褶皱带。在青藏块体的推挤下,甘新块体向北运动,现代构造应力场主压应力方向近南北向,内部变形调整主要表现为古陆块间的褶皱带的压缩变形与地壳增厚,致使原来已经夷平的天山、阿尔泰等古生代褶皱带上升形成再生山脉。
图3 中国地震震源机制解
图4 中国大地震地表破裂带
中国大陆东部的基底由松辽、华北、扬子、华夏等古陆块及围绕着这些古陆块的古生代至早—中生代褶皱带组成。以上述古陆块为核心,自北向南形成东北块体、华北块体、华南块本及东南沿海块体,其中受西部动力学过程影响最大的是华北块体。华北块体的西部现代构造应力场主压应力方向为北东东向。受甘新块体及青藏块体向北及北东方向运动的影响,沿着近南北及北北东方向的断层发生右旋张扭运动并在尾端形成北东或近东西向的拉张盆地。这一运动形式在太行山以西表现得最为典型,并可部分影响到郯庐带以西的华北中部地区。郯庐带以东的华北东部地区现代构造应力场主压应力方向为近东西向,地震断层往往表现为北东及北西两组共轭剪切断层的活动,这一情况与华北西部地区的以北北东向右旋扭动为主的张扭性活动方式明显不同,说明华北东部地区的现代构造活动主要是受西太平洋边缘板块运动的影响。震源机制结果还表明:这一来自西太平洋边缘构造带的影响可以越过郯庐带影响到华北中部地区。因此位于太行山以东及郯庐带以西的华北中部地区是受东西两种影响混杂的过渡地带。以华夏古陆残块及沿海晚古生代,早中生代褶皱带为基底的东南沿海块体明显受到菲律宾海板块吕宋弧与台湾陆壳碰撞的影响,现代构造应力场主压应力方向为北西西向,沿海有一系列等间距排列的北西-北北西向张扭性断裂及北东东向压扭性断裂,北东走向的山地缓慢隆起,地震活动强度从沿海向内陆海逐渐减弱。位于东南沿海块体与青藏块体之间的华南块体其西半部基底为扬子古陆块,东半部基底由加里东褶皱带组成。在东南沿海块体及青藏块体的东西两侧挤压下缓慢隆升,现代构造应力场主压应力方向也为北西向,但现代构造活动较弱,是中国大陆地震活动强度最低的块体。东北块体的基底为松嫩古陆块及其周围的褶皱带,受太平洋板块俯冲及日本海小板块反向俯冲的影响,现代构造应力场主压应力方向为近东西向。
4 大陆块体内部变形及应变能释放方式
4.1 块体内部构造软弱带
地震的空间分布表明中国大陆板块内部应变能的释放除了沿着上述板内一级块体的边界进行外,还有相当一部分是在块体内部沿着各种先存的构造软弱带进行的。当先存的构造软弱带方向与现代构造应力场最大剪应力方向相近时,具有最大的活动性。
中国大陆东部的前寒武纪古陆块特别是华北地块,在中、新生代时期曾普遍遭受过裂谷作用的改造。在裂谷强烈扩张时期,沿着裂谷带上地幔软流圈上拱,地壳减薄,形成地壳颈化地带。地壳颈化带是中国大陆东部重要的构造软弱带,华北的板内大地震大多沿着这些地壳颈化带展布。例如,汾渭带、银川-河套带、华北平原带、郯庐带中段等。东南沿海最重要的一条地震带——广东滨海地震带,则与南海第三纪扩张时形成的被动大陆边缘地壳颈化带有关。
在中国大陆西部,一些晚古生代或中生代褶皱带的主边界断裂或主中央断裂仍是当地最重要的构造软弱带,许多大地震沿着这些地带分布。
4.2 块体内部主要变形方式
4.2.1 走滑及共轭剪切网络
从地震震源机制及大地震地表破裂及变形带上可以看出,走滑断层作用是中国大陆板内地块内部最常见的变形方式。无论是中国东部地区还是西部地区,大部分地震都是以走滑错动分量为主的。走滑一般沿着那些与现代构造应力场的最大剪应力方向相近的原有构造软弱带发生。由于最大剪应力是成对出现的,因此在适当的条件下会形成各种规模的共轭剪切网络。例如,在华北地块的中部,主压应力方向以北东东向为主,地震大多沿着北北东向古近纪古裂谷地壳颈化带及北西西向古裂谷横向断裂发生,形成锐角指向北东东的共轭剪切网络。在东南沿海地块存在着锐角指向北西西的较小规模的共轭剪切网络。
4.2.2 走滑拉分
走滑断层引起的尾部拉张或错列部位拉张,是中国大陆东部地区常见的另一种块体内部变形方式。中国大陆东部有一部分地震的震源机制解具正断层性质,它们都是由走滑拉分引起的。特别是华北地块的西部,因受到青藏地块向东北方向的推挤,沿着北北东方向及近南北向的右行走滑断层发育一系列北东走向至近东西走向的走滑拉分盆地。这些盆地的边缘及内部主要断层大多以正断层或正-走滑断层为主。例如图3所示河套盆地1979年五原地震,即是典型的正断层。
4.2.3 逆冲及地壳缩短
在中国西部,除了走滑断层引起的地震外,尚有相当一部分地震是由逆冲断层引起的。例如图3所示的1963年乌恰地震、1965年乌鲁木齐地震、1969年乌什地震,以及1985年乌恰地震等。地震资料还表明,在中国西部即使是走滑断层性质的地震也往往都含有逆冲断层的分量。由此可见,逆冲作用以及与此相伴的地壳缩短作用在中国西部板内地块内部的变形中起了重要作用。可以这样说,在中国西部,板内块体内部变形及应变能的主要释放方式是走滑加逆冲,而在中国东部,则是走滑加拉分,两者形成明显对比。
4.2.4 块体旋转
近来块体旋转在大陆板内块体运动及内部变形中所起的作用日益受到重视。一些研究结果曾指出华北地块西部的鄂尔多斯块体存在着反时针旋转。另一些研究结果则指出在青藏地块的东缘,存在着一系列北西向小地块的顺时针旋转。我们设想由于板内块体运动受到周围环境的限制,不可能像岩石圈板块那样作大幅度的平动,因而往往需要用块体转动来调整各自的位置及释放应变能量。
著名的“南北地震带”沿着特提斯-喜马拉雅构造带收尾的部位展布。它是中国西部大陆相对于东部大陆作右旋扭动的结果。沿着南北地震带,发生较多的块体旋转不是偶然的,它说明块体旋转可能在调节中国西部及东部这两个截然不同的构造变形区方面,起了相当重要的作用。由于西部大陆相对东部大陆作右旋扭动,因此南北地震带以西的块体转动多为顺时针方向,其以东的块体旋转多为反时针方向。
5 大地震复发周期与板内块体运动及内部变形速率
近十多年来迅速发展起来的史前地震研究对现有地震资料是一个极有意义的补充与外延,它不但大大拓宽了我们对地震空间分布的视野,并且使我们对地震事件在最近地质历史时期的时、空分布规律开始获得某些认识。
我国现在通过野外地震地质考察发现并进行过年代测定的全新世史前地震遗迹已达近百处。在很多地方通过详细的槽探工作,证实了史前地震事件的多次重复,并采用14C,热释光,ESR等多种测年手段估算了大地震的复发间隔。
从表1列出的史前地震复发间隔时间可以看出,青藏块体及其周边大地震的复发间隔一般在1000~2000a;甘新块体大地震的复发间隔约为2000~3000a;华北块体的大地震复发间隔一般为2000~5000a或更长,这与板缘地震带大地震复发间隔仅为100~200a相比,相差了一到两个数量级,这一事实与上面提到的板内块体边界运动的弥散性及微弱性均表明大陆板内块体的相对运动速率及规模是有限的。在周边板块的推挤下,中国大陆内部块体之间存在着一定幅度的相对运动,并以此来调节板块间的运动,但是否像某些外国学者所认为的那样普遍存在水平运动年速率高达厘米级的大陆挤出运动(continental escape),看来是很值得商榷的。
表1 中国大陆史前地震事件重复间隔
从大震复发间隔的时间来看,可以认为在中国大陆内部年速率达厘米级的板内块体水平运动是很个别的。板内一级块体的边界及内部主要活动断裂一般具有毫米级的水平运动速率,西部较高、东部较低。同时在中国大陆东部相当普遍地存在着低于毫米级的缓慢或极缓慢板内断裂活动。需要指出的是,在这里“缓慢”或“极缓慢”仅只是相对于板缘的活动速率而言的。这些“缓慢”或“极缓慢”的板内断裂活动同样可以造成破坏性地震的发生并留下各种构造形迹,只不过其复发周期相对较长,时间非线性特征更加复杂而已。而这,正是板内地震预报及工程地震安全性评价的难点之所在。
6 结语
地球动力学研究的进展,在很大程度上依赖于观测技术的发展。在某种意义上甚至可以说,有什么样的观测技术,就会有什么样的地球动力学。
尽管近十多年来,人们在深部探测、地球物理资料解释、空间技术的应用、地球化学及地质测年技术方面取得不少重要进展。但是应该看到,就整体而言,我们对地球深部的探测能力及对地质历史的追溯能力目前仍然是相当有限的。存在着许多观测能力上的“盲区”及“模糊区”。在这种情况下,目前的不少推断与解释(包括本文中提出的一些认识)只具有阶段性的意义,其中有一些日后可能被证实为不充分资料基础上的误解。
在未来的一二十年内,地球动力学研究能取得多大进展不完全取决于地球科学家的努力,它在很大程度上还取决于人类整体科学技术水平所能提供给地球科学家的技术支持能力。不过,作为一个地球科学家也不应该仅仅只是等待别的学科的发展给自己带来新的“技术利剑”,而应该主动地到别的学科的武器库中去寻找,应该主动跟踪别的学科的技术发展前沿,或者再加上自己的“创意”,组装出地球科学新一代的“干将”与“莫邪”。
致谢 本论文是在国家自然科学基金项目(编号49572155)及中国地震局重点项目(编号85-07-01及95-05-02)的支持下完成的。作者感谢丁国瑜、马宗晋、汪一鹏、邓起东、张裕明、时振梁、高维明,多年来在地震地质工作中给予的各种支持与帮助,感谢北京大学钱祥麟老师在中国区域构造及大陆结晶基底方面给予的热情指教。此外,周永东、杨文龙、张华等曾在不同程度上参与本项工作,在此一并致以诚挚谢意。
参考文献
J.P.Avouac,P.Tapponnier,M.Bai,H.You and G.Wang.Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan.Jour.Geophys.Res.,1993,98:6755~6804.
J.P.Avouac,P.Tapponnier.Kinematic model of active deformation in central Asia.Geoph.Res.Lett..1993,20:895~898.
邓起东,陈社发,赵小麟.龙门山逆断裂带中段的构造地貌学研究.地震地质,1994,16(4):389~403.
Ding Guoyu.The inhomogeneity of Holocene faulting.Earthquake Res.in China,1991,5:95~105.
国家地震局中国地震区划图编委会.中国及邻区地震震源机制图.北京:地震出版社,1991.
国家地震局中国地震区划图编委会.中国及邻近海域活动构造图.北京:地震出版社.1991.
P.England and P.Molnar.Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet.Lett.to Nature,1990,344:140~142.
W.E.Holt,M.Li and A.J.Haines.Earthquake strain and instantaneous relative motions within central and eastern Asia.Geophys.J.Int.,1995,122:569~593.
J.G.John.Tectonics of China:continental scale cataclastic flow.Mechnical Behavior of Crustal Rocks.Geophysical Monograph,1981,24:98~105.
P.Molnar.The Geologic history and structure of the Himalaya.American Scientist.1986,74:144~154.
P.Molnar.Continental tectonics in the aftermath of plate tectonics.Nature,1988,335(8):131~137.
G.Peltzer and P.Tapponnier.Formation and evolution of strike-slip faults , rifts.and basins during the India-Asia collision:an experimental approach.Jour.Geophys.Res..1988,93(B12):15085~15117.
G.Peltzer.P.Tapponnier and R.Armijo.Magnitude of late Quaternary left-lateral displacements along the north edge of Tibet.Science,1989,246:1285~1289.
H.Z.Wang and X.X.Mo.An outline of the tectonic evolution of China.Episodes,1995.18(1&.2):6~16.
Y.P.Wang and X.Y.Ma.Basic characteristics of active tectonics in China.Episodes,1995.18(1&.2):73~76.
X.C.Xiao and T.D.Li.Tectonic evolution and uplift of the Qinghai-Tibet Plateau.Episodes.1995,18(1&.2):31~35.
H.Ye,B.T.Zhang and F.Y.Mao.The Cenozoic tectonic evolution of the Great North China:two types of rifting and crustal necking in the Great North China and their tectonic implications.Tectonophysics,1987 ,133:217~227.
H.Ye,Y.D.Zhou,Q.Zhou,W.L.Yang,G.G.Chen and C.T.Hao.Study on potential seismic sources for seismic zonation and engineering seismic hazard analysis in continental area.IASPEI Publication Series for the IDNDR,1993,3:473~478.
H.Ye.G.G.Chen,Q.Zhou.Study on the intraplate potential seismic sources.Prceedings of 5th ICSZ,Presses Academiques,1995,1424~1431.
Y.Q.Zhang.P.Vergely and J.Mercier.Active faulting in and along the Qinling Range(China)inferred from SPO Timagery analysis and extrusion tectonics of south China.Tectonophysics,1995,243:69~95.
曾融生,朱露培等.华北盆地强震的震源模型兼论强震和盆地的成因.地球物理学报,1991,34(3):288~301.
J.D.Zheng.Significance of the Altun Tagh fault of China.Episodes,1991,14(4):307~312.
丁国瑜(主编).中国活断层图集.北京:地震出版社,1989.
丁国瑜.第四纪断层上断裂活动的群集及迁移现象.第四纪研究,1989,(1):36~47.
丁国瑜,卢演俦.对我国现代板内运动状况的初步探讨.科学通报,1986,(18):1412~1415.
丁国瑜.全新世断层活动的不均匀性.中国地震,1990,6(1):1~10.
邓起东等.新疆独山子—安集海活动逆断裂带晚第四纪活动特征及古地震.见:活动断裂研究(1).北京:地震出版社,1991.
马杏垣等.中国岩石圈动力学纲要,1∶400万中国及邻近海域岩石圈动力学图说明书.北京:地质出版社.1987.
马宗晋等.1966~1976中国九大地震.北京:地震出版社,1984.
叶洪等.喜马拉雅地区的地震活动性与近期地壳运动.地震地质,1981,3(2).
任金卫等.则木河断裂带北段地震地貌及古地震研究.地震地质,1989,11(1).
汪一鹏等.宁夏香山-天景山断裂带晚第四纪强震重复间隔的研究.中国地震,1990,6(2).
国家地震局鄂尔多斯活动断裂系课题组.鄂尔多斯周缘活动断裂系.北京:地震出版社,1988.
杨章.新疆特克斯—昭苏地震断层的发现及有关问题的讨论.地震地质,1988,7(1).
高维明等.1668年郯城8.5级地震的发震构造,中国地震,1988,4(3).
虢顺民等.1515年云南永胜地震形变带和震级讨论,地震研究,1988,11(2).
裴柏村与走马塘村那个村进士多
走马塘村进士多
千古名村“走马塘村”,一个经历过千年科举制度的古村落,被誉为“中国进士第一村”。
为考察火山做出贡献的人有谁
刘嘉麒院士:刘嘉麒院士在火山地质学方面作了大量的系统性原创工作。他是我国火山和玛珥湖古气候研究领域的主要学术带头人,承担过多项国家级和国际合作项目,在火山地质与第四纪环境地质等方面作了大量系统性创新性工作。1990年他被国家教委和国务院学位委员会表彰为“有突出贡献的博士学位获得者”;2003年当选为中国科学院院士。
丁国瑜院士:丁国瑜是国家“八五”攀登计划中“中国现代地壳运动及地球动力学研究”项目专家组成员和参加者。他现为国家大型科学工程重大项目“中国地壳运动观测网络”专家组成员,国家重点基础研究项目“中国大陆强震机理与预测”项目顾问组成员,正承担着国家“九五”重点科技攻关项目“新疆伽师强震群成因及帕米尔东北侧强震预测研究”和国家自然基金重点项目“青藏、华北和华南三大块体接合区第四纪构造变动的研究”等课题。
野外识别断层的标志有哪些
如下:
①地层、岩脉、矿脉等地质体在平面或剖面上突然中断或错开。
②地层的重复或缺失,这是断层走向与地层走向大致平行的正断层或逆断层常见的一种现象,在断层倾向与地层倾向相反,或二者倾向相同但断层倾角小于地层倾角的情况下,地层重复表明为正断层,地层缺失则为逆断层。
③擦痕,断层面上两盘岩石相互摩擦留下的痕迹,可用来鉴别两盘运动方向进而确定断层性质。
④牵引构造。断层运动时断层近旁岩层受到拖曳造成的局部弧形弯曲,其凸出的方向大体指示了所在盘的相对运动方向。
⑤由断层两盘岩石碎块构成的断层角砾岩、断层运动碾磨成粉末状断层泥等的出现表明该处存在断层。此外还可根据地貌特征(如错断山脊、断层陡崖、水系突然改向)来识别断层的存在。
简介:
断层与地震
地壳中的断层密如织网。断层从较小的破裂一直到上千公里的断裂带,有各种不同的尺度和深度,缝合带是多条断层的聚合带。
晚第四纪以来有活动的断层称为活动断层。活动断层的活动常常是缓慢的,突然快速变动时便可产生地震。
1989年丁国瑜等将活断层的发展分为初始期、生长期、活跃期和衰亡期。
据中国地震信息网:地震是地球内部物质运动的结果。这种运动反映在地壳上,使得地壳产生破裂,促成了断层的生成、发育和活动。“有地震必有断层,有断层必有地震”,断层活动诱发了地震,地震发生又促成了断层的生成与发育,因此地震与断层有密切联系。
丁国瑜的个人经历
1966年邢台地震以后,丁国瑜在研究新构造运动的基础上,开始重点进行活动构造、地震构造与地震预测研究。他对平原区新构造与地震活动的关系进行了探讨,撰写了《河北平原水系变迁与新构造》、《河流坡降与现代构造运动关系》等研究报告,编制了《河北平原水系与新构造图》。在此期间,他首次明确指出了河北平原区水系裂点与隐伏断裂、新构造活动的内在联系,提出了根据水系形态和变迁历史研究新构造运动,为第四纪覆盖区新构造运动研究开辟了新途径。他先后参加了邢台、蒲县、丰南、普洱、海城、龙陵、道孚、乌恰等地震的现场考察研究,还参加过邯郸、山西、陕西等地地裂缝与地震关系的调查研究及震情趋势判定的研究。这些工作均成为他研究中国大陆内部强震活动特性的基础。
1969—1970年丁国瑜去非洲参加了中国援建的坦桑尼亚—赞比亚铁路沿线地震烈度的考察研究工作。他与时振木梁、应绍奋等组成了地震专家组,丁国瑜任组长。他们在非常艰苦的条件下,耐着赤道地带的高温,穿过狮群、象群、野牛等野兽出没、人烟稀少的地区,毒蜂群集的丛林和高可没人的茅草草原,穿过东非裂谷的火山带、坦噶尼喀湖区,深入东非的一些黑人部落,调查了铁路沿线的新构造活动和地震活动的情况,为铁路抗震设计提供了沿线所需的地震烈度资料。从非洲回国后丁国瑜被调至中央地震工作办公室震情分析组从事地震预报及震情分析研究。 丁国瑜十分重视地震研究与第四纪地质学、地貌学、新构造学、大地构造学、地球动力学等有关学科的结合,并身体力行。他非常注意有关的国际动态,多次不失时机地引进国际上最新研究领域和研究方法。1974年他出访美国,带回了第一套有关中国全部领土的卫星影像遥感资料,率先将其引入中国地震构造研究并及时组织开始了中国分省、区的地震构造图的编制工作。
1976年时的国家地震局局长是谁分析预报室主任是谁
局长是刘英勇,老红军,这家伙虽不懂业务,但显然深谙为官之道。
原党组书记胡克实,于1976年7月12日在批邓运动中下台,它是所谓团中央“三胡”之一,邓的心腹,在地震局中潜势力极大,或者说邓的潜势力极大。刘、梅、副局长查志远、张魁三等都是胡的人。
分析预报室主任丁国瑜当时在云南,他的责任不大
丁国瑜的简介
地质学家。生于河北高阳。1952年北京大学地质系毕业。1959年获苏联莫斯科地质勘探学院副博士学位。1985年当选为第三世界科学院院士。中国地震局研究员。长期从事新构造、地震构造和地震危险性预测研究。在建立我国地震监测、分析预报系统方面作了大量开创性工作。提出了我国地壳现代破裂网络与地震活动关系的模型,率先编制了中国活断层滑动速率图和现代板内运动图,并主编了中国活断层图集。在活动构造、古地震、活断层习性、活断层分段以及这些方面的研究成果在许多重大工程地震危险性评价中的应用作出了贡献。
1980年当选为中国科学院院士(学部委员)。
对中国现代地壳破裂网络与地震活动的关系、活断层、滑动速率、活动习性、古地震及这些研究成果在重大工程地震危险性评估中的应用等方面作出了贡献。