×

数学八年级下册知识点总结

数学八年级下册知识点总结(八年级下册数学知识点总结)

jnlyseo998998 jnlyseo998998 发表于2022-12-31 15:57:09 浏览89 评论0

抢沙发发表评论

本文目录

八年级下册数学知识点总结

数学是一门很重要的学科,下面是八年级下册数学重点知识点的总结,希望能在数学的学习上给大家带来帮助。

四边形

1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。

3.平行四边形的判定:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形; 两组对角分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。

4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

5.直角三角形斜边上的中线等于斜边的一半。

6.矩形的定义:有一个角是直角的平行四边形。

7.矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

8.矩形判定定理:有一个角是直角的平行四边形叫做矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形。

9.菱形的定义 :邻边相等的平行四边形。

10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

11.菱形的判定定理:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)

12.正方形定义:一个角是直角的菱形或邻边相等的矩形。

13.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

14.正方形判定定理:1.邻边相等的矩形是正方形。2.有一个角是直角的菱形是正方形。

15.梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

16.直角梯形的定义:有一个角是直角的梯形

17.等腰梯形的定义:两腰相等的梯形。

18.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

19.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

分式的运算

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。

一元一次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”。

一元一次方程

1.在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

2.等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

初二数学下册知识点归纳

初二数学下册知识点归纳

  在平平淡淡的学习中,大家都没少背知识点吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。以下是我整理的初二数学下册知识点归纳,欢迎阅读与收藏。

  初二数学下册知识点归纳 篇1

  第一章分式

  1、分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2、分式的运算

  (1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

  3、整数指数幂的加减乘除法

  4、分式方程及其解法

  第二章反比例函数

  1、反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2、反比例函数在实际问题中的应用

  第三章勾股定理

  1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

  第四章四边形

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  第五章数据的分析

  加权平均数、中位数、众数、极差、方差

  初二数学下册知识点归纳 篇2

  1、分式的定义:

  如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。

  2、对于分式概念的理解,应把握以下几点:

  (1)分式是两个整式相除的商。其中分子是被除式,分母是除式,分数线起除号和括号的作用;

  (2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;

  (3)分母不能为零。

  3、分式有意义、无意义的条件

  (1)分式有意义的条件:分式的分母不等于0;

  (2)分式无意义的条件:分式的分母等于0。

  4、分式的值为0的条件:

  当分式的分子等于0,而分母不等于0时,分式的值为0。即,使B=0的条件是:A=0,B≠0。

  5、有理式整式和分式统称为有理式。整式分为单项式和多项式。分类:有理式

  单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

  只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由数学网为您提供的初二下册数学知识点归纳:分式的概念,祝您学习愉快!

  初二数学下册知识点归纳 篇3

  含义:分母中含有未知数的方程叫做分式方程。

  分式方程的解法:

  ①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};

  ②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,系数化为1)求出未知数的值;

  ③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

  一般地验根,只需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根,否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。如果分式本身约分了,也要代进去检验。

  初二数学下册知识点归纳 篇4

  1、正方形的概念

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)具有平行四边形、矩形、菱形的一切性质;

  (2)正方形的四个角都是直角,四条边都相等;

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;

  (4)正方形是轴对称图形,有4条对称轴;

  (5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;

  (6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

  3、正方形的判定

  (1)判定一个四边形是正方形的主要依据是定义,途径有两种:

  先证它是矩形,再证有一组邻边相等。

  先证它是菱形,再证有一个角是直角。

  (2)判定一个四边形为正方形的一般顺序如下:

  先证明它是平行四边形;

  再证明它是菱形(或矩形);

  最后证明它是矩形(或菱形)。

  初二数学下册知识点归纳 篇5

  一、一般地,用符号“《“(或“≤“),“》“(或“≥“)连接的式子叫做不等式。

  能使不等式成立的未知数的值,叫做不等式的解.不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.求不等式解集的过程叫解不等式.

  由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

  不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

  等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.

  二、不等式的基本性质

  1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。)

  性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.

  性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.不等式的基本性质《1》、若a》b,则a+c》b+c;《2》、若a》b,c》0则ac》bc若c《0,则ac《bc

  不等式的其他性质:反射性:若a》b,则bb,且b》c,则a》c

  三、解不等式的步骤:

  1、去分母;

  2、去括号;

  3、移项合并同类项;

  4、系数化为1。

  四、解不等式组的步骤:

  1、解出不等式的解集

  2、在同一数轴表示不等式的解集。

  五、列一元一次不等式组解实际问题的一般步骤:

  (1)审题;

  (2)设未知数,找(不等量)关系式;

  (3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

  六、常考题型:

  1、求4x-67x-12的非负数解.

  2、已知3(x-a)=x-a+1r的解适合2(x-5)8a,求a的范围.

  3、当m取何值时,3x+m-2(m+2)=3m+x的解在-5和5之间。

  初二数学下册知识点归纳 篇6

  一、 基本情况分析

  1、学生情况分析:

  上学期期末考试的成绩总体来看,成绩较好,优等生较多。在学生所学知识的掌握程度上,一部分学生能够理解知识,知识间的内在联系也较为清楚,但个别学生连简单的基础知识还不能有效的掌握,成绩较差。

  2、教材分析:

  本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:

  第十六章 二次根式

  本节课的主要内容是二次根式的乘除运算和二次根式的化简。通过本节课应使学生掌握二次根式的乘除运算法则和化简二次根式的常用方法。

  第十七章 勾股定理

  直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

  本章重点是勾股定理和逆定理,难点是灵活运用勾股定理和逆定理解题。

  第十八章 平行四边形

  四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。

  本章重点是平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系与区别。

  第十九章 一次函数

  函数是研究现实世界变化规律的一个重要模型,本单元学生在学习了一次函数后,进一步研究反比例函数。学生在本章中经历:反比例函数概念的抽象概括过程,体会建立数学模型的思想,进一步发展学生的抽象思维能力;经历反比例函数的图象及其性质的探索过程,在交流中发展能力这是本章的重点之一;经历本章的重点之二:利用反比例函数及图象解决实际问题的过程,发展学生的数学应用能力;经历函数图象信息的识别应用过程,发展学生形象思维;能根据所给信息确定反比例函数表达式,会作反比例函数图象,并利用它们解决

  简单的实际问题。本章的难点在于对学生抽象思维的培养,以及提高数形结合的意识和能力。

  第二十章 数据的分析

  本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。

  本章重点是平均数、中位数、众数以及极差、方差等知识,难点是运用统计相关的知识解决实际问题。

  二、 教学目标和要求

  1、知识与技能目标

  学生通过学习二次根式、勾股定理、平行四边形、一次函数、数据分析,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能。加强双基训练。

  2、过程与方法目标

  掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究勾股定理、平行四边形的有关判定、性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对二次根式和一次函数的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

  3、情感与态度目标

  通过对数学知识的探究,进一步认识数学与生活的’密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流。

  三、 提高教学质量的主要措施?

  1、认真做好教学工作,也是提高成绩的主要方法:认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习,快乐生活。

  2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

  4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,以题类题,触类旁通。培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

  初二数学下册知识点归纳 篇7

  分式方程:

  含分式,并且分母中含未知数的方程——分式方程。

  解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

  解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

  解分式方程的步骤 :

  (1)能化简的先化简

  (2)方程两边同乘以最简公分母,化为整式方程;

  (3)解整式方程;

  (4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。

  分式方程检验方法

  将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

  列方程应用题的步骤是什么?

  (1)审;

  (2)设;

  (3)列;

  (4)解;

  (5)答.

  应用题有几种类型;基本公式是什么?基本上有五种:

  (1)行程问题:

  基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.

  (2)数字问题

  在数字问题中要掌握十进制数的表示法.

  (3)工程问题

  基本公式:工作量=工时×工效.

  (4)顺水逆水问题

  v顺水=v静水+v水. v逆水=v静水-v水.

  初二数学下册知识点归纳 篇8

  五大知识点:

  1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用

  2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)

  3、根的判别式

  4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)

  5、一元二次方程根与系数的关系(韦达定理)

  【课本相关知识点】

  1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

  2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)

  3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。其中ax2是 ,a是 ,bx是 ,b是 ,c是常数项

  初二数学下册知识点归纳 篇9

  1.乘法规定:(a≥0,b≥0)

  二次根式相乘,把被开方数相乘,根指数不变。

  推广:

  (1)(a≥0,b≥0,c≥0)

  (2)(b≥0,d≥0)

  2.乘法逆用:(a≥0,b≥0)

  积的算术平方根等于积中各因式的算术平方根的积。

  注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;

  3.除法规定:(a≥0,b》0)

  二次根式相处,把被开方数相除,根指数不变。

  推广:其中a≥0,b》0,。

  方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

  4.除法逆用:(a≥0,b》0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  初二数学下册知识点归纳 篇10

  无理数:无限不循环小数叫无理数

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

;

数学八年级下册知识点

如果说创新是成功的常青树,那么知识就是滋养的长流水;如果说潜能是创造力的根基,那么知识就是潜能的主要内容。接下来我给大家分享关于数学 八年级 下册知识,希望对大家有所帮助!

数学八年级下册知识1

一元一次不等式与一元一次不等式组

一. 不等关系

※1. 一般地,用符号“《”(或“≤”), “》”(或“≥”)连接的式子叫做不等式

※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.

非负数 《===》 大于等于0(≥0) 《===》 0和正数 《===》 不小于0

非正数 《===》 小于等于0(≤0) 《===》 0和负数 《===》 不大于0

二. 不等式的基本性质

※1. 掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a》b,那么a+c》b+c, a-c》b-c.

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:

如果a》b,并且c》0,那么ac》bc,

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:

如果a》b,并且c《0,那么ac《bc, 《 span=““》《/bc, 《》

※2. 比较大小:(a、b分别表示两个实数或整式)

一般地:

如果a》b,那么a-b是正数;反过来,如果a-b是正数,那么a》b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a《b,那么a-b是负数;反过来,如果a-b是正数,那么a《b;《 span=““》《/b,那么a-b是负数;反过来,如果a-b是正数,那么a《b;《》

即:

a》b 《===》 a-b》0

a=b 《===》 a-b=0

a a-b《0

三. 不等式的解集:

※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。

※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同

3.不等式的解集在数轴上的表示:

用数轴表示不等式的解集时,要确定边界和方向:

①边界:有等号的是实心圆圈,无等号的是空心圆圈;

②方向:大向右,小向左

四. 一元一次不等式:

※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。

※2.解一元一次不等式的过程与解一元一次方程类似,当不等式两边都乘以一个负数时,不等号要改变方向。

※3.解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(不等号的改变问题) 

※4.一元一次不等式基本情形为ax》b(或ax《b)《 span=““》《/b)《》

①当a》0时,解为 ;

②当a=0时,且b《0,则x取一切实数;

当a=0时,且b≥0,则无解;

③当a《0时,解为 。

5. 列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意。

六. 一元一次不等式组

※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组。

※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集。如果这些不等式的解集无公共部分,就说这个不等式组无解。(解集的公共部分,通常是利用数轴来确定。) 

※3.解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集。

两个一元一次不等式组的解集的四种情况(a、b为实数,且a《b)《 span=““》《/b)《》

x》b,两大取较大

x》a,两小取小

a《x《b,大小交叉中间找《 span=““》《/x《b,大小交叉中间找《》

无解,在大小分离没有解(是空集)

数学八年级下册知识2

图形的平移与旋转

一、平移变换: 

1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。 

2.性质:

(1)平移前后图形全等; 

(2)对应点连线平行或在同一直线上且相等。  

3.平移的作图步骤和 方法 : 

(1)分清题目要求,确定平移的方向和平移的距离;

(2)分析所作的图形,找出构成图形的关健点;

(3)沿一定的方向,按一定的距离平移各个关健点;

(4)连接所作的各个关键点,并标上相应的字母;

(5)写出结论。 

二、旋转变换: 

1.概念:

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。 

说明:

(1)图形的旋转是由旋转中心和旋转的角度所决定的;

(2)旋转过程中旋转中心始终保持不动。

(3)旋转过程中旋转的方向是相同的.

(4)旋转过程静止时,图形上一个点的旋转角度是一样的。

旋转不改变图形的大小和形状。

2.性质:

(1)对应点到旋转中心的距离相等; 

(2)对应点与旋转中心所连线段的夹角等于旋角;

(3)旋转前、后的图形全等。

3.旋转作图的步骤和方法:

(1)确定旋转中心及旋转方向、旋转角;

(2)找出图形的关键点;

(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;

(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。

说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。

4.常见考法 

(1)把平移旋转结合起来证明三角形全等;

(2)利用平移变换与旋转变换的性质,设计一些题目  

数学八年级下册知识3

因式分解

一. 分解因式

※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

※2.因式分解与整式乘法是互逆关系:

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘。

二.提公共因式法

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

※2.概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律。

※3.易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式;提出后;括号中这一项为+1;不漏掉。

三.公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

※2.主要公式:

(1)平方差公式:a2-b2=(a+b)(a-b)

(2)完全平方公式: 图片

※3.运用公式法:

(1)平方差公式:a2-b2=(a+b)(a-b)

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号。

(2)完全平方公式:图片

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍。

※4.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止。

四.分组分解法:

※1.分组分解法:利用分组来分解因式的方法叫做分组分解法。

图片

※2.概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式。

※3.注意:分组时要注意符号的变化。

五. 十字相乘法:

※1.对于二次三项式图片 ,将a和c分别分解成两个因数的乘积,图片  ,图片 ,且满足图片 ,往往写成图片的形式,将二次三项式进行分解。

※2. 二次三项式图片的分解:

图片     

※3.规律内涵:

(1)理解:分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同。

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p。

4. 易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确。


数学八年级下册知识点相关 文章 :

★ 八年级下册数学知识点整理

★ 初二数学下册知识点归纳与数学学习方法

★ 人教版八年级下册数学复习提纲

★ 八年级下册数学知识点归纳

★ 八年级下册数学知识点总复习

★ 八年级数学下册知识点整理

★ 八年级下册的数学知识点

★ 八年级下册数学知识点汇总

★ 人教版八年级下册数学知识点总结

★ 八年级下册数学知识点期末复习提纲

初二数学下册知识点

学习从来无捷径。每一门科目都有自己的 学习 方法 ,但其实都是万变不离其中的,数学作为主科之一,和语文英语一样,也是要记、要背、要讲练的。下面是我给大家整理的一些初二数学下册的知识点,希望对大家有所帮助。

初二下册数学知识点归纳北师大版

第一章分式

1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

初二下册数学知识点

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二数学三角形知识点归纳

【直角三角形】

◆备考兵法

1.正确区分勾股定理与其逆定理,掌握常用的勾股数.

2.在解决直角三角形的有关问题时,应注意以勾股定理为桥梁建立方程(组)来解决问题,实现几何问题代数化.

3.在解决直角三角形的相关问题时,要注意题中是否含有特殊角(30°,45°,60°).若有,则应运用一些相关的特殊性质解题.

4.在解决许多非直角三角形的计算与证明问题时,常常通过作高转化为直角三角形来解决.

5.折叠问题是新中考 热点 之一,在处理折叠问题时,动手操作,认真观察,充分发挥空间 想象力 ,注意折叠过程中,线段,角发生的变化,寻找破题思路.

【三角形的重心】

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:

1.重心和三角形3个顶点组成的3个三角形面积相等。

2.重心到三角形3个顶点距离的平方和最小。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3纵坐标:(Y1+Y2+Y3)/3竖坐标:(Z1+Z2+Z3)/3

4重心到顶点的距离与重心到对边中点的距离之比为2:1。

5.重心是三角形内到三边距离之积的点。

如果用塞瓦定理证,则极易证三条中线交于一点。


初二数学下册知识点相关 文章 :

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点整理

★ 初二数学下册知识点人教版

★ 初二数学下册重点知识总结

★ 初二下册数学重点知识点归纳

★ 八年级下册数学知识点归纳

★ 八年级下册数学知识点总结归纳

★ 初二下册数学知识点

★ 初二下数学知识点

★ 八年级下册的数学知识点

初二下册数学知识点

初二下册数学知识点有哪些你知道吗?初二是学习数学的一个关键时期,想要学好数学需要有一个好的 学习 方法 ,其实最简单又有效的学习方法就是对知识点进行归纳 总结 了。一起来看看初二下册数学知识点,欢迎查阅!

初二下册数学总结

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

第三章勾股定理

1勾股定理:直角三角形的`两个直角边的平方和等于斜边的平方

2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形

第四章四边形

1平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二必备数学知识

位置与坐标

1、确定位置

在平面内,确定物体的位置一般需要两个数据。

2、平面直角坐标系及有关概念

①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

④不同位置的点的坐标的特征

a、各象限内点的坐标的特征

点P(x,y)在第一象限→ x》0,y》0

点P(x,y)在第二象限 → x《0,y》0

点P(x,y)在第三象限 → x《0,y《0

点P(x,y)在第四象限 → x》0,y《0

b、坐标轴上的点的特征

点P(x,y)在x轴上 → y=0,x为任意实数

点P(x,y)在y轴上 → x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

d、和坐标轴平行的.直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于 ?y?

点P(x,y)到y轴的距离等于 ?x?

点P(x,y)到原点的距离等于 √x2+y2

初二数学常考知识

一次函数

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点

关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数

①正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。②一次函数的图像:

所有一次函数的图像都是一条直线。

③一次函数、正比例函数图像的主要特征

一次函数y=kx+b的图像是经过点(0,b)的直线;


初二下册数学知识点相关 文章 :

★ 八年级下册数学知识点整理

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点总结归纳

★ 初二数学知识点整理归纳

★ 八年级数学知识点整理归纳

★ 八年级数学知识点总结

★ 初二数学知识点复习整理

★ 初二数学知识点小结

★ 初中数学八年级重点

★ 初二数学知识点归纳上册人教版

八年级数学下册知识点总结

八年级数学下册知识点总结

  数学(mathematics或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。下面是我整理的关于八年级数学下册知识点总结,欢迎大家参考!

  第十六章 分式

  一.知识框架

  二.知识概念

  1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

  2.分式有意义的条件:分母不等于0

  3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

  4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

  分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)

  5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.

  6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c

  2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd

  3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd

  4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc

  (2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c

  7.分式方程的意义:分母中含有未知数的方程叫做分式方程.

  8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).

  分式和分数有着许多相似点。教师在讲授本章内容时,可以对比分数的特点及性质,让学生自主学习。重点在于分式方程解实际应用问题。

  第十七章 反比例函数

  一.知识框架

  二.知识概念

  1.反比例函数:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

  2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点

  3.性质:当k》0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;

  当k《0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。

  4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

  在学习反比例函数时,教师可让学生对比之前所学习的一次函数启发学生进行对比性学习。在做题时,培养和养成数形结合的思想。

  第十八章 勾股定理

  一.知识框架

  二 知识概念

  1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。

  勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

  2.定理:经过证明被确认正确的命题叫做定理。

  3.我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

  勾股定理是直角三角形具备的重要性质。本章要求学生在理解勾股定理的前提下,学会利用这个定理解决实际问题。可以通过自主学习的发展体验获取数学知识的感受

  第十九章 四边形

  一.知识框架

  二.知识概念

  1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。

  2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

  3.平行四边形的判定 1.两组对边分别相等的四边形是平行四边形

  2.对角线互相平分的四边形是平行四边形;

  3.两组对角分别相等的四边形是平行四边形;

  4.一组对边平行且相等的四边形是平行四边形。

  4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  5.直角三角形斜边上的中线等于斜边的一半。

  6.矩形的定义:有一个角是直角的平行四边形。

  7.矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

  8.矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。

  2.对角线相等的平行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  9.菱形的定义 :邻边相等的平行四边形。

  10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  11.菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

  2.对角线互相垂直的平行四边形是菱形。

  3.四条边相等的四边形是菱形。

  12.S菱形=1/2×ab(a、b为两条对角线)

  13.正方形定义:一个角是直角的菱形或邻边相等的矩形。

  14.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。

  15.正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。

  16.梯形的’定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

  17.直角梯形的定义:有一个角是直角的梯形

  18.等腰梯形的定义:两腰相等的梯形。

  19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  本章内容是对平面上四边形的分类及性质上的研究,要求学生在学习过程中多动手多动脑,把自己的发现和知识带入做题中。因此教师在教学时可以多鼓励学生自己总结四边形的特点,这样有利于学生对知识的把握。

  第二十章 数据的分析

  一.知识框架

  二.知识概念

  1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。

  2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

  3. 众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。

  4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。

  5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

  本章内容要求学生在经历数据的收集、整理、分析过程中发展学生的统计意识和数据处理的方法与能力。在教学过程中,以生活实例为主,让学生体会到数据在生活中的重要性。

;

初二数学下册重要知识点总结

知识是一座宝库,而实践就是开启宝库的钥匙。学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。下面是我给大家整理的一些初二数学的知识点,希望对大家有所帮助。

初二上学期数学知识点归纳

分式方程

一、理解定义

1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:

(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四 总结 ”

3、增根:分式方程的增根必须满足两个条件:

(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:

(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;

(3)解整式方程;(4)验根;

注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验 方法 :将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题

步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

八年级 数学课文知识点

整式的乘除与分解因式

一.知识概念

1.同底数幂的乘法法则:(m,n都是正数)

2..幂的乘方法则:(m,n都是正数)

3.整式的乘法

(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m》n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a》0时,a-p的值一定是正的;当a《0时,a-p的值可能是正也可能是负的,如,

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1.提公共因式法2.运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

初二数学 复习方法

按部就班

数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。

强调理解

概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。

基本训练

学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。

重视错误

订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。

数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。


初二数学下册重要知识点总结相关 文章 :

★ 初二数学下册知识点总结

★ 初二数学下册知识点归纳与数学学习方法

★ 八年级下册数学知识点整理

★ 初二数学下册知识点总结归纳

★ 八年级下册数学知识点总结归纳

★ 初二下册数学必考知识点总结归纳

★ 初二下册数学知识点归纳总结

★ 八年级下册数学知识点归纳

★ 初二下学期数学知识点总结

★ 初二下册数学知识点