本文目录
七年级上册数学书重点内容总结
初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。
整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.整式:①单项式②多项式。
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
7.合并同类项法则:系数相加,字母与字母的指数不变。
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。
9.整式的加减:
一找:(划线);
二“+”:(务必用+号开始合并);
三合:(合并)。
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
一次函数
(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。
(二)函数三要素
1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。
(三)一次函数的表示方法
1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3.图像法:用图象来表示函数关系的方法叫做图象法。
(四)一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。
3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。
4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。
5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。
6.平移时:上加下减在末尾,左加右减在中间。
角的知识点
1.角:角是由两条有公共端点的射线组成的几何对象。
2.角的度量单位:度、分、秒
3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点
4.角的比较:
(1)角可以看成是由一条射线绕着他的端点旋转而成的。
(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。
(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
5.余角和补角:
(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。
性质:等角的余角相等。
(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。
性质:等角的补角相等。
一元一次方程
(1)定义:
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(2)解一元一次方程的步骤
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1.
平行线
1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.判定两条直线平行的方法:
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5.平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
七年级上册数学书内容汇总
为了方便大家更好的学习和复习七年级上册数学课本内容,现将七年级上册数学书重要内容整理分享出来。
七年级上册数学书重要内容
(一)有理数
(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线 叫做数轴。
(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(5)有理数的加减法
同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
(6)有理数的乘法
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积为0. 例:0×1=0
(7)有理数的除法
除以一个不为0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除
以任何一个不为0的数,都得0。
(8)有理数的乘方
求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当a?看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。
(二)整式
(1)整式:是单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
①单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
②多项式:由若干个单项式相加组成的代数式叫做多项式。
③系数:单项式中所有字母的指数的和叫做它的次数。
④次数:一个单项式中,所有变数字母的指数之和,叫做这个单项式的次数。
⑤项:组成多项式的每个单项式叫做多项式的项。
⑥多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
⑦同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
⑧合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(2)整式加减
整式的加减运算时,如果遇到括号先去掉括号,再合并同类项。
(三)一元一次方程
(1)定义:
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。
(2)解一元一次方程的步骤
①去分母:把系数化成整数。
②去括号
③移项:把等式一边的某项变号后移到另一边。
④合并同类项
⑤系数化为1.
(四)几何图形
(1)几何图形
将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。
(2)立体图形
立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。
分类:柱体、锥体、旋转体、截面体等。
(3)平面图形
平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。
分类:圆形、多边形、弓形、多弧形。
(4)点、线、面、体
点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。
线:线是由无数个点集合成的图形。
面:在空间中,到两点距离相同的点的轨迹。
体:多面体是指四个或四个以上多边形所围成的立体。
(5)直线、射线、线段
直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。
射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。
线段:是指直线上两点间的有限部分(包括两个端点) ,有别于直线、射线。
(6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。
(7)余角:两角之和为90°则两角互为余角,等角的余角相等。
(8)补角:两角之和为180°则两角互为补角,等角的补角相等。
人教版初一上册数学课本内容
现在很多小学升初中的学生都会提前学习初一的课程,这也是为了学生在正式上课的时候不被落下。很多学生的关注点都在数学这门课上,那么我就为各位初一学生总结一下人教版初一上册数学的课本内容,希望对各位准初一生有帮助。
人教版初一上册数学—正负数、有理数、数轴
1、初一数学正负数—正数:大于0的数。负数:小于0的数。0即不是正数也不是负数。正数大于0,负数小于0,正数大于负数。
2、初一数学有理数—有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)整数:正整数、0、负整数,统称整数。分数:正分数、负分数。
3、初一数学数轴—用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
人教版初一上册数学—有理数的加减法、乘除法、运算法则
1、初一数学有理数加减法—先定符号,再算绝对值。加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。加法交换律:a+b= b+ a 两个数相加,交换加数的位 置,和不变。加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。a?b = a +(?b) 减去一个数,等于加这个数的相反数。
2、初一数学有理数乘除法—同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。乘法交换律:ab= b a 4.乘法结合律:(ab)c = a (b c)乘法分配律:a(b +c)= a b+ a。
以上就是我整理的初一数学上册的内容,可能内容并不完整,但是也希望各位准初一的学生可以学好数学这门课程,同时为以后初中数学课程的学习打好基础。