本文目录
一元一次方程练习题 要30道
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程。
如:
x+(3x-1)=55
x+3x-1=55
4x=56
x=14
一元一次方程 的练习题
1.车间加工一批零件,甲独做需18h,乙独做需12h。现在先由甲独做3h,剩下的由甲乙两人合作,问合作时间多少?
2.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开 乙管,5小时注满水池。
① 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把 水池注满?
② 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三
管同时开放,多少小时才能把一空池注满水?
3.若2(3-a)x-4=5是关于x的一元一次方程,则a≠ .
4.关于x的方程ax=3的解是自然数,则整数a的值为: .
5.方程5x-2(x-1)=17 的解是 .
6.x=2是方程2x-3=m-的解,则m= .
7.若-2x2-5m+1=0 是关于x的一元一次方程,则m= .
8.当y= 时,代数式5y+6与3y-2互为相反数.
9.当m= 时,方程的解为0.
10.已知a≠0.则关于x的方程3ab-(a+b)x=(a-b)x的解为
11.方程ax=b的解是( ).
A.有一个解x= B.有无数个解
C.没有解 D.当a≠0时,x=
12.解方程(x-1)=3,下列变形中,较简捷的是( )
A.方程两边都乘以4,得3(x-1)=12
B.去括号,得x-=3
C.两边同除以,得x-1=4
D.整理,得
13.方程2-去分母得( )
A.2-2(2x-4)=-(x-7) B.12-2(2x-4)=-x-7
C.12-2(2x-4)=-(x-7) D.以上答案均不对
14.7(2x-1)-3(4x-1)=4(3x+2)-1;
15.(5y+1)+ (1-y)= (9y+1)+ (1-3y);
16.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
17.若x=-1是方程2x-3a=7的解,则a=_______.
18.当x=______时,代数式 x-1和 的值互为相反数.
19.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
20.在方程4x+3y=1中,用x的代数式表示y,则y=________.
21.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
22.已知三个连续的偶数的和为60,则这三个数是________.
23.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
一元一次方程练习题
1.光明中学学生为“希望小学”捐款,七年级和八年级共捐款11144元。已知七年级有学生452人,八年级比七年级少12人,但平均每人比七年级多捐1元。求七年级平均每人捐款多少元? 解:设七年级平均每人捐款x元,则八年级平均每人捐款x+1元,他的人数为452-12人
所以方程为452x+(452-12)*(x+1)=11144
452x+440x+440=11144
x=12
二、某种商品每件的进价为250元,按标价的九折销售时,利润率为15.2%,这种商品每件标价是多少?
解:设标价x元,由题意得:(90%x-250)÷250=15.2%,解得x=320元,即标价320元。
三、已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品.
解:设每箱有x个产品,由题意得:(8x+4)÷5=(11x+1)÷7+1,解得x=12,即每箱有12个产品。
四、一辆大汽车原来的行驶速度是30千米/时,现在开始均匀加速,每小时提速20千米/时;一辆小汽车原来的行驶速度是90千米/时,现在开始均匀减速,每小时减速10千米/时。经过多长时间两辆车的速度相等?这时车速是多少?
解:设经过x小时两辆车的速度相等,此时车速是(30+20x)km/h,由题意得:30+20x=90-10x,解得x=2,(30+20x)=70,即2小时候两车速度相等,为70千米/小时。
五、物体从高处自由落下时,经过的距离S与时间T之间有S= 二分之一 GT的平方的关系,这里G是一个常数。当T=2时,S=19.6,求T=3时S的值(T的单位是秒,S的单位是米)
解:因为s=1/2gt^2,将t=2,s=19.6带入原方程得:19.6=1/2g×4,解得g=9.8,当t=3时,将t=3,g=9.8带入原方程得:s=1/2×9.8×9=44.1,即s=44.1。
六、跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?
解:设快马x天追上慢马,由题意得:(12+x)150=240x,解得x=20,即20天快马可以追上慢马。
七、运动会的跑道一圈长400M。甲练习骑自行车,平均每分骑350M;乙练习跑步,平均每分跑250M。两人从同一处反向出发,经过多少时间首次相遇?又经过多少时间再次相遇?
解:设x分钟后首次相遇,y分钟后再次相遇,
由于无论首次相遇还是再次相遇两个人都得合起来走一圈的距离,则由题意得:
(350+250)x=(350+250)y=400,解得x=y=2/3.,即2/3分钟后两人首次相遇,2/3分钟后两人再次相遇
1 2x-10.3x=15
2 0.52x-(1-0.52)x=80
3 x/2+3x/2=7
4 3x+7=32-2x
5 3x+5(138-x)=540
6 3x-7(x-1)=3-2(x+3)
7 18x+3x-3=18-2(2x-1)
8 3(20-y)=6y-4(y-11)
9 -(x/4-1)=5
10 3=6
7(2x-1)-3(4x-1)=4(3x+2)-1;
(5y+1)+ (1-y)= (9y+1)+ (1-3y);
=x+2;
20%+(1-20%)(320-x)=320×40%
2(x-2)+2=x+1
2(x-2)-3(4x-1)=9(1-x)
11x+64-2x=100-9x
15-(8-5x)=7x+(4-3x)
3(x-7)-2=22
3/2-x=2
1 2x-10.3x=15
2 0.52x-(1-0.52)x=80
3 x/2+3x/2=7
4 3x+7=32-2x
5 3x+5(138-x)=540
6 3x-7(x-1)=3-2(x+3)
7 18x+3x-3=18-2(2x-1)
8 3(20-y)=6y-4(y-11)
9 -(x/4-1)=5
10 3=6
10/3 (x/5+3/7)=9x/2
5/3(x+0.5)+2=3x-6
5x+2(2x/3+2)=2/3(x-6)+2
(2x-7)/2-(6x-5)/3=2x+3
(3x+2)/5-(x-6)=x/3
6x-(x/3+2)=2(x/5+5/2)-3
3(x/11-2)-5=2+3x/3
10/3(2x-6)=3/5
x/2-(x/3-2)=3
2/3(x+3)-3=5x/3
5/3(2x-5/3)=2x/5-8/9
25(x/3-x/2+2/5)-2=3/5(x-2/7)+4/9
3/4=3/2x
(x+1)/2-(5+x)/6=3-(x-1)/3
(0.2-x)/0.3-1.5=(1-3x)/2.5
y-(y-3)/2=y/6+7/2
(5y+4)/3+(y-1)=2-(5y-5)/12
(4x-1.5)/0.5-(5x-0.8)/0.2=(1.2-x)/0.1
(x+1)/0.3-2x=(0.1x+0.2)/0.05
11x/2+(64-2x)/6=(100-9x)/8
15-(8-5x)/2=7x/3+(4-3x)/4
3(x-7)/4-2/9=22/3
3/2-x/9=2/5
2x+7^2/2=157/5
5x*56+(-3^3-x)]/9=5
89x/3-5^2-(8-5x)/5=541
x+7-(-36+8^2)/2=8+7^4/3
a-7-98+7a=3.2*5a
89/2+35/6x=3*9+2^3/5+7x
3X+189/3=521/2
4Y+119*^3=22/11
7(2x-1)-3(4x-1)/9=/9
/3
/5=(x+2)/6
2/3*8*1/4x=89/2
20%/5+(1-20%)(320-x)/9=320×40%/3
2(x-2)/6+2/9=(x+1)/2
2(x-2)/2-3(4x-1)/3=9(1-x)/220%/5+(1-20%)(320-x)/9=320×40%/
2(x-2)/6+2/9=(x+1)/2
11x/2+(64-2x)/6=(100-9x)/8
15-(8-5x)/2=7x/3+(4-3x)/4
3(x-7)/4-2/9=22/3
3/2-x/9=2/5
2(x-2)/2-3(4x-1)/3=9(1-x)/2
一元一次方程的练习题
二. 填空题:
1、 ,则 ___?_____.
2、已知 ,则 __?________.
3、关于 的方程 的解是3,则 的值为_________?_______.
4、现有一个三位数,其个位数为 ,十位上的数字为 ,百位数上的数字为 ,则这个三位数表示为__________?________.
5、甲、乙两班共有学生96名,甲班比乙班多2人,则乙班有______47______人.
6、某数的3倍比它的一半大2,若设某数为 ,则列方程为_3x-x/2=2___.
7、当 _?__时,代数式 与 的值互为相反数.
8、在公式 中,已知 ,则 _?__.
10、一根内径为3㎝的圆柱形长试管中装满了水,现把试管中的水逐渐滴入一个内径为8㎝、高为1.8㎝的圆柱形玻璃杯中,当玻璃杯装满水时,试求管中的水的高度下降了多少?
解:设下降了xcm
3.14*8^2*1.8=3.14*3^2*X
x=12.8
11、国庆期间,“新世纪百货”搞换季打折. 简爽同学以8折的优惠价购买了一件运动服节省16元,那么他购买这件衣服实际用了多少元?
设原价x元
x-0.8x=16
x=80 实际 80*0.8=64
12、成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发几小时后两车相遇?(沿途各车站的停留时间不计).
504-90*1=414千米
(90+48)x=414
x=3
13、我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔. 如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要多少分钟就能追上乌龟?
101x=1000+1*x
x=10
14、一年定期存款的年利率为1.98%,到期取款时须扣除利息的20%作为利息税上缴国库. 假若小颖存一笔一年定期储蓄,到期扣除利息税后实得利息158.4元,那么她存入的人民币是多少元?
x+1.98%*20%*x=158.4
x=155.93
15、52辆车排成两队,每辆车长a米,前后两车间隔3a/2米,车队平均每分钟行50米,这列车队通过长为546米的广场需要的时间是16分钟,则a=_____4.83___.
546+26a+3/2a*25=16*50 算不了整数
一元一次方程练习题 带答案
第六章 一元一次方程测试题
A卷
一、填空题
1、若 与 互为相反数,则a等于
2、 是方程 的解,则
3、方程 ,则
4、如果 是关于 的一元一次方程,那么
5、在等式 中,已知 ,则
6、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得
7、将1000元人民币存入银行2年,年利息为5﹪,到期后,扣除20﹪的利息税,可得取回本息和为 元。
8、单项式 是同类项,则
9、某品牌的电视机降价10﹪后每台售价为2430元,则这种彩电的原价为每台 元。
10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 升水。
二、选择题
1、下列方程中,是一元一次方程的是( )
A、 B、 C、 D、
2、与方程 的解相同的方程是( )
A、 B、 C、 D、
3、若关于 的方程 是一元一次方程,则这个方程的解是( )
A、 B、 C、 D、
4、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租 辆客车,可列方程为( )
A、 B、 C、 D、
5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是: ,怎么呢?小明想了一想,便翻看书后答案,此方程的解是 ,很快补好了这个常数,并迅速地完成了作业,同学们,你们能补出这个常数吗?它应是( )
A、1 B、2 C、3 D、4
6、已知: 有最大值,则方程 的解是( )
7、把方程 去分母后,正确的是( )。
A、 B、 C、 D、
8、某商品连续两次9折降价销售,降价后每件商品的售价为 元,该产品原价为( )。
A、 元 B、 元 C、 元 D、 元
9、一个长方形的长是宽的4倍多2厘米,设长为 厘米,那么宽为( )厘米。
A、 B、 C、 D、
10、若 互为相反数,则 ( )。A、10 B、-10 C、 D、
三、解答题
1、 2、
3、 4、
5、 6、
四、解答题
1、已知 ,若① ,求 的值;②当 取何值时, 小 ;③当 取何值时, 互为相反数?
2、已知 是关于 的一元一次方程,试求 的值,并解这个方程。
3、若 ,求 的值。
4、若关于 求 的值。
五、用心想一想:你一定是生活中的强者!
1、某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个。两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?
2、我市某学校计划向西部山区的学生捐赠3500册图书,实际共捐了4125册。其中,初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生比原计划多捐了多少册?
第6章 一元一次方程测试题
B卷
一、填空题
1、方程 的解是 。
2、如果 ,那么a= 。
3、如果 +8=0是一元一次方程,则m= 。
4、若 的倒数等于 ,则x-1= 。
5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x,则可将方程 。
6、如果a、b分别是一个两位数的十位上的数和个位上的数,那么把十位上的数与个位上的数字对调后的两位数是 。
7、方程 用含x的代数式表示y得 ,用含y的代数式表示x得 。
8、如果方程 与方程 是同解方程,则k= 。
9、单项式 与9a2x-1b4是同类项,则x= 。
10、若 与 是相反数,则x-2的值为 。
二、选择题
1、下列各式中是一元一次方程的是( )。
A、 B、 C、 D、
2、根据“x的3倍与5的和比x的 多2”可列方程( )。
A、 B、 C、 D、
3、解方程 时,把分母化为整数,得( )。
A、 B、
C、 D、
4、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。
A、56 B、48 C、36 D、12
5、方程 的解为-1时,k的值为( )。
A、10 B、-4 C、-6 D、-8
6、国家规定工职人员每月工资超出800元以上部分缴纳个人所得税的20%,小英的母亲10月份交纳了45.89的税,小英母亲10月份的工资是( )。
A、8045.49元 B、1027.45元 C、1227.45元 D、1045.9元
7、某市举行的青年歌手大奖赛今年共有a人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的人数为x人,则x为( )。
A、 B、 C、 D、
8、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。
A、赚16元 B、赔16元 C、不赚不赔 D、无法确定
9、某工人原计划每天生产a个零件,现实际每天多生产b个零件,则生产m个零件提前的天数为( )。
A、 B、 C、 D、
10、完成一项工程甲需要a天,乙需要b天,则二人合做需要的天数为( )。
A、 B、 C、 D、
三、解方程
1、 2、
3、 4、
四、解答题
1、y=1是方程 的解,求关于x的方程 的解。
2、方程 的解与关于x的方程 的解互为倒数,求k的值。
3、已知x=-1是关于x的方程 的一个解,求 5的值。
五、列方程解应用题
1、一般轮船在水中航行,已知水流速度是10千米/时,此船在静水中速度是40千米/时,此船在A、B两地间往返航行需几小时?在这个问题中如果设所需时间为x小时,你还需补充什么条件,能列方程求解?根据你的想法把条件补充出来并列方程求解。
2、某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?
3、甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?
4、汽车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?
5、甲、已两个团体共120人去某风景区旅游。风景区规定超过80人的团体可购买团体票,已知每张团体比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买
团体票,共优惠了 480元,则团体票每张多少张?
参考答案:第六章一元一次方程A卷
一、1、-1 2、 3、-3或9 4、1 5、50 6、1.5(X+2X)=10 7、1080 8、2
9、2700 10、40(点拨:设应由乙桶向甲桶倒x升水则有:180+ x =2(150- x)解得x =40)
二、1-5 A、B、A、B、C 6-10 A、B、D、D、C
三、1、 2、x =-4 3、 4、 5、x = -9 6、x =4或-2
四、1、(1)
2、a=-2 X= -6
3、XY=-4
4、 (点拨:不含Y项,则Y的系数等于0,合并同类项得:(6-3R)X+(5-2R)Y-2+4R=0,即5-2R=0,∴ )
五、1、25 60(点拨:设加工甲部件X人,则乙部件(85-X)人,则3×16X=2×10(85-X)解得:X=25 85-25=60)
2、400册,225册(设初中学生原计划损X册图书,则120﹪X+115﹪(3500-X)=4125 解得:X=2000 2000×120﹪-2000=400册,(3500-2000)×115﹪-(3500-2000)=225册)
第六章一元一次方程B卷
一、1、 2、a=-2 或-4 3、m=1 4、X=0 5、33岁 10X+X=33 6、10b+a
7、 9、X=2 10、 (点拨:由题意可知:5X+2+(-2X+9)=0,从而求出X=- 则x-2=- -2=- )
二、1、C 2、B 3、B 4、B 5、C 6、B 7、C 8、B 9、B 10、C
三、1、 2、X=4 3、Y= -2 4、X= -1
四、1X=-2(点拨:解把Y=1代入方程2- (m-Y)=2Y,解得m=1;再把m=1代入方程m(X+4)=2(mX+3)解得:X=-2)
2、R=1 3、-23
五、1略
2、780件(点拨:设原计划生产X个零件,则有 ,解得X=780)
3、20元,80元(点拨:设甲商品原单价X元,则乙商品原单价为(100-X)元,则(1-10%)X+(100-X)(1+5﹪)=100(1+2﹪)解得X=20)
4、42千米,72千米(设去时上坡X千米,则下坡为(2X-14)千米,
则: 解得X=42 2X-14=70)
5、16元 (点拨:设团体票每张x元,则个人票每张 元,则有
120× -120x=480 解得:x=16)
一元一次方程练习题20道
第3章 一元一次方程全章综合测试
(时间90分钟,满分100分)
一、填空题.(每小题3分,共24分)
1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.
2.若x=-1是方程2x-3a=7的解,则a=_______.
3.当x=______时,代数式 x-1和 的值互为相反数.
4.已知x的 与x的3倍的和比x的2倍少6,列出方程为________.
5.在方程4x+3y=1中,用x的代数式表示y,则y=________.
6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.
7.已知三个连续的偶数的和为60,则这三个数是________.
8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,则需________天完成.
二、选择题.(每小题3分,共30分)
9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为( ).
A.0 B.1 C.-2 D.-
10.方程│3x│=18的解的情况是( ).
A.有一个解是6 B.有两个解,是±6
C.无解 D.有无数个解
11.若方程2ax-3=5x+b无解,则a,b应满足( ).
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
12.把方程 的分母化为整数后的方程是( ).
13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,两人同地、同时、同向起跑,t分钟后第一次相遇,t等于( ).
A.10分 B.15分 C.20分 D.30分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ).
A.增加10% B.减少10% C.不增也不减 D.减少1%
15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( )厘米.
A.1 B.5 C.3 D.4
16.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).
A.从甲组调12人去乙组 B.从乙组调4人去甲组
C.从乙组调12人去甲组
D.从甲组调12人去乙组,或从乙组调4人去甲组
17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场.
A.3 B.4 C.5 D.6
18.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )
A.3个 B.4个 C.5个 D.6个
三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)
19.解方程: -9.5.
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.
22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.
23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名 A B C D E F G H
各站至H站
里程数(米) 1500 1130 910 622 402 219 72 0
例如:要确定从B站至E站火车票价,其票价为 =87.36≈87(元).
(1)求A站至F站的火车票价(结果精确到1元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).
24.某公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上
票 价 5元 4.5元 4元
某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?
(2)两班各有多少名学生?(提示:本题应分情况讨论)
答案:
一、1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3. (点拨:解方程 x-1=- ,得x= )
4. x+3x=2x-6 5.y= - x
6.525 (点拨:设标价为x元,则 =5%,解得x=525元)
7.18,20,22
8.4
二、9.D
10.B (点拨:用分类讨论法:
当x≥0时,3x=18,∴x=6
当x《0时,-3=18,∴x=-6
故本题应选B)
11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)
12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)
13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800米,列方程得260t+800=300t,解得t=20)
14.D
15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)
16.D 17.C
18.A (点拨:根据等式的性质2)
三、19.解:原方程变形为
200(2-3y)-4.5= -9.5
∴400-600y-4.5=1-100y-9.5
500y=404
∴y=
20.解:去分母,得
15(x-1)-8(3x+2)=2-30(x-1)
∴21x=63
∴x=3
21.解:设卡片的长度为x厘米,根据图意和题意,得
5x=3(x+10),解得x=15
所以需配正方形图片的边长为15-10=5(厘米)
答:需要配边长为5厘米的正方形图片.
22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故
100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171
解得x=3
答:原三位数是437.
23.解:(1)由已知可得 =0.12
A站至H站的实际里程数为1500-219=1281(千米)
所以A站至F站的火车票价为0.12×1281=153.72≈154(元)
(2)设王大妈实际乘车里程数为x千米,根据题意,得 =66
解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G站下的车.
24.解:(1)∵103》100
∴每张门票按4元收费的总票额为103×4=412(元)
可节省486-412=74(元)
(2)∵甲、乙两班共103人,甲班人数》乙班人数
∴甲班多于50人,乙班有两种情形:
①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得
5x+4.5(103-x)=486
解得x=45,∴103-45=58(人)
即甲班有58人,乙班有45人.
②若乙班超过50人,设乙班x人,则甲班有(103-x)人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存在.
故甲班为58人,乙班为45人.
======================================================================
3.2 解一元一次方程(一)
——合并同类项与移项
【知能点分类训练】
知能点1 合并与移项
1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.
(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.
2.下列变形中:
①由方程 =2去分母,得x-12=10;
②由方程 x= 两边同除以 ,得x=1;
③由方程6x-4=x+4移项,得7x=0;
④由方程2- 两边同乘以6,得12-x-5=3(x+3).
错误变形的个数是( )个.
A.4 B.3 C.2 D.1
3.若式子5x-7与4x+9的值相等,则x的值等于( ).
A.2 B.16 C. D.
4.合并下列式子,把结果写在横线上.
(1)x-2x+4x=__________; (2)5y+3y-4y=_________;
(3)4y-2.5y-3.5y=__________.
5.解下列方程.
(1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求x的值:
(1)25与x的差是-8. (2)x的 与8的和是2.
7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.
8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.
知能点2 用一元一次方程分析和解决实际问题
9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,桶中原有油多少千克?
10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.
11.小明每天早上7:50从家出发,到距家1000米的学校上学,每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,并且在途中追上了他.
(1)爸爸追上小明用了多长时间?
(2)追上小明时距离学校有多远?
【综合应用提高】
12.已知y1=2x+8,y2=6-2x.
(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?
13.已知关于x的方程 x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程 -15=0的解.
【开放探索创新】
14.编写一道应用题,使它满足下列要求:
(1)题意适合一元一次方程 ;
(2)所编应用题完整,题目清楚,且符合实际生活.
【中考真题实战】
15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.
(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.
(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).
答案:
1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.
(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.
2.B [点拨:方程 x= ,两边同除以 ,得x= )
3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)
4.(1)3x (2)4y (3)-2y
5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .
(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.
(3)y- = y-2,移项,得y- y=-2+ ,合并,得 y=- ,系数化为1,得y=-3.
(4)7y+6=4y-3,移项,得7y-4y=-3-6, 合并同类项,得3y=-9,
系数化为1,得y=-3.
6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.
(2)根据题意可得方程: x+8=2,移项,得 x=2-8,合并,得 x=-6,
系数化为1,得x=-10.
7.k=3
8.19
9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.
解这个方程,得x=7.
答:桶中原有油7千克.
10.解:设应该从盘A内拿出盐x克,可列出表格:
盘A 盘B
原有盐(克) 50 45
现有盐(克) 50-x 45+x
设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.
解这个方程,得x=2.5,经检验,符合题意.
答:应从盘A内拿出盐2.5克放入到盘B内.
11.解:(1)设爸爸追上小明时,用了x分,由题意,得
180x=80x+80×5,
移项,得100x=400.
系数化为1,得x=4.
所以爸爸追上小明用时4分钟.
(2)180×4=720(米),1000-720=280(米).
所以追上小明时,距离学校还有280米.
12.(1)x=-
(2)x=-
13.解:∵ x=-2,∴x=-4.
∵方程 x=-2的根比方程5x-2a=0的根大2,
∴方程5x-2a=0的根为-6.
∴5×(-6)-2a=0,∴a=-15.
∴ -15=0.
∴x=-225.
14.本题开放,答案不唯一.
15.解:(1)设CE的长为x千米,依据题意得
1.6+1+x+1=2(3-2×0.5)
解得x=0.4,即CE的长为0.4千米.
(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),
则所用时间为 (1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);
若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),
则所用时间为 (1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).
故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).
初中100道一元一次方程题
1、(x-1.5-1)/4=(x-1.5+1)/5 。
解:5(x-2.5)=4(x-0.5) 、x=-2+12.5 、x=10.5 。
2、l+300=30v 。
解:300-l=10v 、v=15m/s 、l=150m 。
3、80x+80y=400 。
解:80y-80x=400 、所以x=0、y=5 。
4、/4=(18-y)/60 。
解:y/4=(18-x)/60+(18-x-y)/60 、所以x=2 y=2 。
5、x=4y 。
解:3x+11-x-y=25 、x=8 、y=2 。
6、(x-2)12=8x 。
x=6 。
7、x+y=4/5.2 。
x-y=4/6.5 、解得:x=9/13,y=1/13 。
8、5*(1/3)+5*X=15*X 。
x=1/6 。
9、(1/3)x/12=(1/3)x/+1 。
化简得: (5/3)x=(4/3)x+60 、(1/3)x=60 、x=180 。
10 、2X+5X=14000 。
7X=14000 、X=2000 、2X=4000 、5X=10000
11、x+(35-20)*1.5%x=1323 x=1080 。
12、2x-10.3x=15 。
13、0.52x-(1-0.52)x=80 。
14、x/2+3x/2=7 。
15、3x+7=32-2x 。
16、3x+5(138-x)=540 。
17 、3x-7(x-1)=3-2(x+3) 。
18、18x+3x-3=18-2(2x-1)。
19、3(20-y)=6y-4(y-11)。
20、-(x/4-1)=5 。
21、3=6 。
22、3X+189=521 。
23、4Y+119=22 。
24、3X*189=5 。
25、8Z/6=458 。
26、3X+77=59 。
27、4Y-6985=81 。
28、87X*13=5 。
29、7Z/93=41 。
30、15X+863-65X=54。
31、58Y*55=27489 。
32、3X+18=52 x=34/3 。
33、4Y+11=22 y=11/4。
34、3X*9=5 x=5/27 。
35、8Z/6=48 z=36 。
36、3X+7=59 x=52/3 。
37、4Y-69=81 y=75/4 。
38、8X*6=5 x=5/48 。
39、7Z/9=4 y=63/7 。
40、15X+8-5X=54 x=4.6。
41、5Y*5=27 y=27/40。
42、8x+2=10 x=1 。
43、x*8=88 x=11 。
44、y-90=1 y=91 。
45、2x-98=2 x=50 。
46、6x*6=12 x=1/3。
47、5-6=5x x=-1/5。
48、6*x=42 x=7 。
49、55-y=33 y=22 。
50、11*3x=60 x=20/11 。
51、8-y=2 y=-6 。
52、x+2=3 。
53、x+32=33 。
54、x+6=18 。
55、4+x=47 。
56、19-x=8 。
57、98-x=13 。
58、66-x=10 。
59、5x=10 。
60、3x=27 。
61、7x=7 。
62、8x=8 。
63、9x=9 。
64、10x=100 。
65、66x=660。
66、7x=49 。
67、2x=4 。
68、3x=9 。
69、4x=16 。
70、5x=25 。
71、6x=36 。
72、8x=64 。
73、9x=81 。
74、10x=100 。
75、11x=121 。
76、12x=144 。
77、13x=169 。
78、14x=196 。
79、15x=225 。
80、16x=256 。
81、17x=289 。
82、18x=324 。
83、19x=361 。
84、20x=400 。
85、21x=441 。
86、22x=484 。
87、111x=12321 。
88、1111x=1234321。
89、11111x=123454321。
90、111111x=12345654321。
91、46/x=23 。
92、64/x=8。
93、99/x=11。
94、1235467564x=0。
95、2x+1= -2+x 。
96、4x-3(20-x)=3。
97、-2(x-1)=4。
98、3X+189=521 。
99、4Y+119=225 。
100、3X+77=59 。
扩展资料:
一元一次方程的解法:
一、一元一次方程的解法比较简单:
1、去分母(如果是分数方程时)。
2、去括号。
3、 要把含未知元素(x)的项移到等号的一边(一般是放在等号左边),把其余的项(常数数项或字母项)放在等式另一边(右边)。
4、合并同类项。
5、用未知数的系数除方程两边的各项,其商就是方程的解。
二 、二元一次方程组的解题步骤:
对于 ax+by=c ----这就是二元一次方程的标准式.y=(c-ax)/b、显然,其解是不确定的。故所谓解二元一次方程是指解二元一次方程组。
其方法就是设法消除一个未知数,使方程组变成一元一次方程来解。
消除未知数的方法有二。
(1)代数加法,又叫加减消元(未知数)法。
(2)代人法。