×

小学三年级奥数题

小学三年级奥数题(小学三年级奥数题及答案)

jnlyseo998998 jnlyseo998998 发表于2022-12-16 22:00:58 浏览77 评论0

抢沙发发表评论

本文目录

小学三年级奥数题及答案

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。
12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
×2=400(元)答:他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。
16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。
17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。
18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4
19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。
20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。
21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。
22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。
23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。
24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。
25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。
28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。
29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。
31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)
32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005

三年级奥数题及答案30道

1.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。
12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。
一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。
4.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。
5.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆
6.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。
7.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
×2=400(元)答:他这个月收入400元。
8.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米
9.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个
10.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)
11.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。
12.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。
13.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。
14.甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。
15.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。
16.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。
17.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。
18找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4
19.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。
20.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。
21.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。
22.找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。
23.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。
24.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。
25.找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。
26.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。
27.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。
28.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。
29.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。
30.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。
31.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)
32.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123
33.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856
34.995+996+997+998+999
原式=(995+999) ×5÷2=4985
35.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005
采纳哦

小学三年级奥数题100道

、 人民路小学操场长90米,宽45米,改造后,长增加10米,宽增加5米。现在操场面积比原来增加多少平方米?
【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积,操场现在的面积是:(90+10)×(45+5)=5000(平方米),操场原来的面积是:90×45=4050(平方米)。所以现在比原来增加5000-4050=950平方米。
(90+10)×(45+5)-(90×45)=950(平方米)
练习(1)有一块长方形的木板,长22分米,宽8分米,如果长和宽分别减少10分米,3分米,面积比原来减少多少平方分米?
练习(2)一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?
2、 一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米,如果长不变,宽减少3米,那么它的面积减少36平方米,这个长方形原来的面积是多少平方米?
【思路导航】由:“宽不变,长增加6米,那么它的面积增加54平方米”可知它的宽是54÷6=9(米);又由“长不变,宽减少3米,那么它的面积减少了36平方米”,可知它的长为:36÷3=12(米),所以,这个长方形的面积是12×9=108(平方米)。 (36÷3)×(54÷9)=108(平方米)
练习(1)一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米,如果长不变,宽增加4米,那么它的面积增加60平方米,这个长方形原来的面积是多少平方米?
练习(2)一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米,如果长不变,宽增加3米,那么它的面积增加48平方米,这个长方形的面积原来是多少平方米?
练习(3)一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米,求这个长方形原来的面积。
3、 下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大。
【思路导航】根据题意,因为一面利用墙,所以两条长加上一条宽等于16米,而宽是4米,那么长是(16-4)÷2=6(米)。因此,占地面积是6×4=24(平方米)
(16-4)÷2×4=24(平方米)
练习(1)下图是某个养禽专业户用一段长13米的篱笆围成一个长方形的养鸡场,求养鸡场的占地面积有多大?
练习(2)用56米长的木栏围成一个长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
4、 一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图),面积比原来的正方形减少181平方分米,原正方形的边长是多少?
【思路导航】把阴影的部分剪下来,并把剪下的两个小正方形拼合起来(如下图),再补上长,长和宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是:181+8×5=221(平方分米),长是原来正方形的边长,宽是:8+5=13(分米)。所以,原正方形的边长是221÷13=17(分米)
(181+8×5)÷(8+5)=17(分米)

小学三年级奥数题 求简单易懂答案

从“如果我给你一条咱俩就一样多”知道,小明比小华多两条。详细解释,就是小明在减去一条鱼,小华加一条鱼后,两人的鱼才相等,那么小明就比小华多2条鱼,就是“1X2等于2”的意思,只是这个式子比较抽象。
同样的道理,在“小明比小华多两条鱼”时(此时,两人的鱼都是自己捉的,没有交换),小华给小明一条鱼,那么小明就比小华多4条鱼了。这时,小明的鱼是小华的两倍,那么这多出来的4条鱼就是小华此时的鱼(交换后小华的鱼)。意思是说,小明现在有8条鱼,小华有4条鱼,一共12条。
这时,如果小明把小华给他的那条鱼再还给他,小明就有8-1=7条鱼;
小华在得回那条鱼后,就是4+1=5条鱼。

小学生三年级奥数题

1 一列客车和一列火车从同一地点相背而行,当客车行驶6小时,货车行驶7小时后,两车相距699千米,客车每小时行多少千米?2 两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米。两车错车时,乙车上一乘客从乙车车头经过它的车窗开始计时,到车尾经过它的车窗共用了38秒。问乙车全长多少米?3 小客车和大客车分别从甲乙两地同时出发,相向而行。诺辆车按原定速度前进,则四小时相遇,诺辆车各自都比原定速度提高2千米/小时,则三小时相遇。甲乙两地相距多少千米?4 大小客车从甲乙两地同时开出,小客车的速度是大客车的两倍,辆车开出60分钟相遇,并继续前进。问大客车比小客车晚多少分钟到达目的地?5 两列对开的货车相遇,甲车上的司机看到乙车从旁边开过去,共用了6秒钟。已知甲车每小时行45千米,乙车每小时行36千米,乙车长多少米?6 两列火车从某站向背而行,甲车的速度是52千米/小时甲车先开出两小时后,乙车才开出,乙车的速度是48千米/小时,乙车开出5小时后,两列火车相相遇多远?7 甲乙两站相距360千米。客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站停留半小时,又以原速返回甲站,两车相遇的地点离乙站多少千米?8大小客车从甲乙两地同时开出,小客车的速度是大客车的3倍,辆车开出60分钟相遇,并继续前进。问大客车比小客车晚多少分钟到达目的地?9 两列火车从某站向背而行,甲车的速度是41千米/小时甲车先开出两小时后,乙车才开出,乙车的速度是23千米/小时,乙车开出9小时后,两列火车相相遇多远?10两列火车相向而行,甲车每小时行59千米,乙车每小时行46千米。两车错车时,乙车上一乘客从乙车车头经过它的车窗开始计时,到车尾经过它的车窗共用了38秒。问乙车全长多少米
【问题】学校有200名学生要去距离学校30千米的工厂参观。学校有一辆公交车限坐50人,学生的步行速度为5千米/小时,车的速度为45千米/小时。为了用最少的时间到达工厂,他们采用步行和乘车相结合的办法。问最少要多少时间到达?
【解答】这道题看似复杂,但我看了楼上几位大侠的解法,对小学三年级的学生来说,简直是天书。其实问题非常简单。
首先,如果将第一批学生直接送到工厂,返回接其他人,则,第一批人在工厂只能干等,所以要充分利用等的时间,将第一批放在合适的位置,在汽车返回接其他人的同时,第一批人接着步行,达到当汽车接上最后一批人抵达工厂时,除最后一批的人也正好达到工厂。
其次,所以,整个过程就是汽车送第一批人并放在合适地点,假设C点,所花的时间和第一批人从C点走到工厂所花的时间之和。
再次,确定C点。由于汽车的速度是45KM/H,人的速度是5KM/H,所以,汽车的效率是人的9倍,所以,C点应该是整个路程的90%,即27KM处
最后,全部时间就是27/45+(30-27)/5=6/5小时,即1.2小时,即1小时12分钟。
可以带进去验算一下,肯定正确。
三年级奥数竞赛试题
姓名 班级 成绩
1、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各10个。一次最少摸出个球,才能保证至少有4个颜色相同?
2、有50个同学去公园划船,每条大船可以坐6人,租金10元;每条船小船可以坐4人,租金8元。那么多种不同的租船方案中哪一种方案最省钱?
3、A、B、C、D、E五人参加乒乓球比赛,每两人都要赛一场,并且只赛一场,规定胜者得2分,负者不得分,已知比赛结果如下:(1)A与E并列第一名;(2)B是第三名;(3)C与D并列第四名,那么B得多少分?
4、15个同学排成一列横队,从左边数起,小林是第11个;从右边数起,小刚是第10个。小林与小刚之间隔几个同学?
5、黑母鸡下1个蛋歇2天,白母鸡下1个蛋歇1天,两只鸡共下10个蛋,最少需要多少天?
6、一筐萝卜共重56千克,先卖出一半萝卜,再卖出剩下的一半,这时连筐共重17千克,问原来这筐萝卜重多少千克?筐重多少千克?
7、小强、小亮和小军练习投篮球,一共投了150次,共有64次没投进。已知小强和小亮一共投进了48次,小亮和小军一共投进了69次,小亮投进了多少次?
8、把3、6、9、12、15、18、21、24、27填在合适的方格里,使每横行、竖行、斜行的三个数相加都得45。
9、鸡和兔共有100只,兔的脚数比鸡的脚数多28只,问,鸡、兔各几只?
10、甲、乙两队共有96人,如果从甲队调8人到乙队,乙队再给丙队36人,那么甲队人数就是乙队的2倍,甲、乙两队原来各有多少人?
11、在1、2、3、……、132这些数中,数字“1”共出现了多少次?
12、小明一家三口人,妈妈比爸爸小2岁,今年全家人的年龄加起来刚好是70岁,而7年前,全家人的年龄加起来刚好是50岁。现在,小明家每个人的年龄各是多少岁?
1、口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各10个。一次最少摸出个球,才能保证至少有4个颜色相同?
3×3+1=10个
2、有50个同学去公园划船,每条大船可以坐6人,租金10元;每条船小船可以坐4人,租金8元。那么多种不同的租船方案中哪一种方案最省钱?
大船每人:10÷6=5/3元
小船每人:8÷4=2元
大船租金便宜,要尽量多租大船
50÷6=8余2
租8条大船,还剩下2个人
6+2=8=2×4
2条小船比2条大船
所以少租1条大船,剩下的8个人租2条小船
最省钱的方案为:租7条大船,2条消除
租金为:7×10+2×8=86元
3、A、B、C、D、E五人参加乒乓球比赛,每两人都要赛一场,并且只赛一场,规定胜者得2分,负者不得分,已知比赛结果如下:(1)A与E并列第一名;(2)B是第三名;(3)C与D并列第四名,那么B得多少分?
每人要赛4场,一共要赛5×4÷2=10场
胜一场得2分,每人最少得0分最多得4×2=8分
每人的得分都是:0,2,4,6,8中的一个
因为AE并列第一,所以没有全胜的,也就没人能得8分
同样,CD并列第四,所以也没有全负的,也就每人得0分
那么并列第一的,只能得6分,并列第四的,只能得2分
B是第三名,得了4分。
4、15个同学排成一列横队,从左边数起,小林是第11个;从右边数起,小刚是第10个。小林与小刚之间隔几个同学?
算上小林和小刚,两次数,重复的同学一共有:
11+10-15=6个
那么小林和小刚之间有:6-2=4个
5、黑母鸡下1个蛋歇2天,白母鸡下1个蛋歇1天,两只鸡共下10个蛋,最少需要多少天?
黑鸡1+2=3天下一个蛋
白鸡1+1=2天下一个蛋
2和3的最小公倍数为6
6天能下:6÷2+6÷3=5个蛋
下10个蛋需要:10÷2×6=12天
再想想。。
黑鸡下完最后一个蛋,要休息2天
白鸡下完最后一个蛋,要休息1天
共同休息的时间为1天
所以下完10个蛋,最少需要12-1=11天
6、一筐萝卜共重56千克,先卖出一半萝卜,再卖出剩下的一半,这时连筐共重17千克,问原来这筐萝卜重多少千克?筐重多少千克?
第二次卖出的萝卜,占总数的:(1-1/2)×1/2=1/4
两次一共卖出了总数的:1/2+1/4=3/4
为:56-17=39千克
原来萝卜重:39÷3/4=52千克
筐重:56-52=4千克
7、小强、小亮和小军练习投篮球,一共投了150次,共有64次没投进。已知小强和小亮一共投进了48次,小亮和小军一共投进了69次,小亮投进了多少次?
三人一共投进了:150-64=86次
小亮投进了:48+69-86=31次
8、把3、6、9、12、15、18、21、24、27填在合适的方格里,使每横行、竖行、斜行的三个数相加都得45。
24,03,18
09,15,21
12,27,06
9、鸡和兔共有100只,兔的脚数比鸡的脚数多28只,问,鸡、兔各几只?
如果100只都是兔,
兔脚有100×4=400只
鸡脚有0只
兔脚比鸡脚多400只
每减少1只兔,增加1只鸡
兔脚减少4只,鸡脚增加2只
兔脚和鸡脚的差,减少4+2=6只
鸡有:(400-28)÷6=62只
兔有:100-62=38只
10、甲、乙两队共有96人,如果从甲队调8人到乙队,乙队再给丙队36人,那么甲队人数就是乙队的2倍,甲、乙两队原来各有多少人?
甲调8人到乙,乙给丙36人
甲乙总数减少了36,为96-36=60人
此时乙有:60÷(2+1)=20人
甲有:20×2=40人
原来,
甲有:40+8=48人
乙有:96-48=48人
11、在1、2、3、……、132这些数中,数字“1”共出现了多少次?
个位:
1,11,21,31,。。。。。。131
一共:(131-1)÷10+1=14个
十位:
10,11,12。。。19,:10个
110,111,。。。119,:10个
一共:10+10=20个
百位:
100,101,。。。132
一共:132-100+1=33个
数字1,一共出现了:
14+20+33=67次
12、小明一家三口人,妈妈比爸爸小2岁,今年全家人的年龄加起来刚好是70岁,而7年前,全家人的年龄加起来刚好是50岁。现在,小明家每个人的年龄各是多少岁?
现在年龄和,和7年前的年龄和,相差:
70-50=20岁
7×3=21岁
所以7年前小明还没有出生
小明今年:20-7×2=6岁
爸爸妈妈今年一共:70-6=64岁
爸爸今年:(64+2)÷2=33岁
妈妈今年:33-2=31岁

小学三年级奥数题

1。学校门前有一条直直的小路长32公尺,在小路的一旁每隔4公尺种一棵杨树,头尾一共种多少棵树?
2。教室门前有一个长方形花坛,长4公尺,宽15公尺。在它的四周每隔05公尺种一棵指甲花,四个角各种了一棵,一共种多少棵花?
3。一个正方形花坛四周摆满了鲜花,四个角上也各摆了一盆花。从每一边看去,它都有15盆,花坛周围一共摆了多少盆花?
4。在一条600公尺长的水渠两旁每隔5公尺种一棵水杉,共要种多少棵?
5。一条街道的一旁从一头到另一头共安装了30盏路灯,每相邻两盏路灯之间相距20公尺,这条小街道长多少公尺?
6。学校后边的小河旁种着22棵杨树,每两棵杨树之间相隔6公尺。同学们在这些杨树间每隔1公尺种一棵月季花,一共种了多少棵?
7。把五张15公尺长的彩色纸条贴成一个长长的纸条,每个接头的地方贴15公分,则贴成的纸条全长多少公尺?
8。立达小学五年级64名同学去郊游。他们排成两条纵队,前后两名同学相距1公尺。整个队伍长度为多少公尺?
9。小玲家的“三五”牌时钟在报时时,每隔5秒敲响一下。八点整时,时钟报时一共用了多少秒?
10。在一块池塘周围的大坝上每隔8公尺种柳树一棵,共种了1075棵柳树。现在要在每两棵柳树之间每隔2公尺种一株柏树。种的柏树一共有多少棵?

求小学三年级上学期奥数题(一题多解 10道)

1.甲、乙、丙三个班共有学生161人,甲班比乙班多2人,乙班比丙班多6人,乙班有多少人?
2. 张洁比妈妈小24岁,4年以后妈妈的年龄是张洁的3倍,今年张洁多少岁?
3. 靖宇大街上原有路灯121盏,相邻两盏路灯相距40米;为美化街道,将老路灯全部改换成新式路灯51盏,求相邻两盏新路灯之间的距离是多少米?
4. 小山是安乐街的交通警,经过长时间的观察信号灯,他发现信号灯的变化情况是红、黄、绿、黄、红、黄,……,如果从红灯亮开始,当信号灯变化了39次时,是什么颜色的灯在亮?
5. 一个长方形,长是宽的3倍,周长是48厘米,求宽是多少?
6. 一根铁丝,第一次用去10米,第二次用去余下的一半多8米,第三次用去余下的一半还多6米,这时还剩下20米,问原来这根铁丝有多长?
7. 三年级数学竞赛获奖的同学中,男同学获奖的人数比女同学多2人,女同学比男同学获奖人数的一半多2人。男、女同学各有几人获奖?
8. 两个数相除商是3,余数是10,被除数、除数、商与余数之和是143。求被除数、除数分别是多少?
9. 有红、白、黑三种颜色的球,白的和红的合在一起有16个,红的比黑的多7个,黑的比白的多5个。三种颜色的球各有多少个?
10. 妈妈到哈安市场给小海买本,5角和8角的练习本共买了20本,共用去13元钱,妈妈买回来5角、8角的练习本各有多少本?
11. 小红和小亮住在同一个大楼,小红家住5楼,回家要上96个台阶,小亮回家要上144个台阶,问小亮家住几楼?
12. 三年级组同学参加“六一”节团体操表演,每横排人数同样多,每竖排人数也同样多。小微的位置是从左数第10人,从右数第8人,从前数第9人,从后数是第7人。参加表演的同学有多少人?
13. 幼儿园的陈老师在给小朋友分饼干,每人分3块,要多出5块;如果每人分4块,还缺8块,幼儿园有小朋友多少名?饼干有多少块?
14. 甲、乙两个油罐,如果每分钟放油5千克,甲罐52分钟把油放尽, 乙罐36分钟把油放完。如果从甲罐向乙罐注油,需要过多少分钟两罐油相等?

小学三年级奥数题,求简单易懂答案

1、火车跑120米比跑80米多跑了120-80=40(米),多跑40米多用的时间是55-45=10(秒),也就是跑40米用10秒,因为路程÷时间=速度,那么火车的速度每秒跑40÷10=4(米)。因为速度×时间=路程,那么火车45秒可以跑45×4=180(米),这个180米里包括火车自身的长度和跑过的80米,即火车车身长180-80=100(米)
2、因为和尚总数与馒头总数相等,根据:一个大和尚吃4个馒头,4个小和尚吃1个馒头,得出5个和尚(即1个大和尚与4个小和尚)正好吃5个馒头。所以我们可以把5个和尚作为一组,100个和尚里有几个5呢,即100÷5=20(组),这20组里有大和尚每组一个即1×20=20(个),小和尚每组四个即4×20=80(个),或:总和尚数--大和尚数=小和尚数,100-20=80个,即得答案。

哪里可以找到小学三年级奥数题及答案

百度百科上就可以找到小学三年级奥数题及答案。

小学三年级奥数题及答案

奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。2012年8月21日,北京采取多项措施坚决治理奥数成绩与升学挂钩。

奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。