本文目录
统计学中的标准差有什么意义
方差方差和标准差:
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;
样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
数学上一般用E{^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。
定义
设X是一个随机变量,若E{^2},而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差或均方差。
由方差的定义可以得到以下常用计算公式:
D(X)=E(X^2)-^2
方差的几个重要性质(设一下各个方差均存在)。
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。
(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
标准差 标准差(Standard Deviation)
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。 这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。
标准差的数值的大小代表什么意义标准差大好还是小好
标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。
标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。
标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大。
一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。