×

杨辉三角

杨辉三角的答案?杨辉三角的规律是什么

jnlyseo998998 jnlyseo998998 发表于2022-11-11 01:11:49 浏览75 评论0

抢沙发发表评论

本文目录

杨辉三角的答案

1.1+(1+x)+(1+x)2+…+(1+x)n的展开式的各项系数之和为(  )A.2n-1  B.2n-1  C.2n+1-1  D.2n (1)令x=1,得:a0+a1+a2+…+a2010=(-1)2010=1(2)令x=-1,得:a0-a1+a2-…+a2010=32010与式联立,-得:2(a1+a3+…+a2009)=1-32010,a1+a3+a5+…+a2009=.(3)Tr+1=C·12010-r·(-2x)r=(-1)r·C·(2x)r,a2k-1《0(kN*),a2k》0(kN*).|a0|+|a1|+|a2|+|a3|+…+|a2010|=a0-a1+a2-a3+…+a2010,所以令x=-1得:a0-a1+a2-a3+…+a2010=32010.

杨辉三角的规律是什么

杨辉三角的规律

  1. 每个数等于它上方两数之和。
  2. 每行数字左右对称,由1开始逐渐变大。
  3. 第n行的数字有n项。
  4. 前n行共/2 个数。
  5. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
  6. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
  7. 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
  8. (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
  9. 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n》1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
  10. 将第n行的数字分别乘以10^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^0=1,11^1=1x10^0+1×10^1=11,11^2=1×10^0+2x10^1+1x10^2=121,11^3=1x10^0+3×10^1+3x10^2+1x10^3=1331,11^4=1x10^0+4x10^1+6x10^2+4x10^3+1x10^4=14641,11^5=1x10^0+5x10^1+10x10^2+10x10^3+5x10^4+1×10^5=161051。
  11. 第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+10+10+5+1=2^(6-1)。
  12. 斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=10,1+3=4,1+3+6=10,1+4=5。
  13. 将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+10+6+1=21,1+10+15+7+1=34,5+20+21+8+1=55。

杨辉三角的规律公式

1、 每个数等于它上方两数之和。

2、 每行数字左右对称,由1开始逐渐变大。

3、 第n行的数字有n+1项。

4、 第n行数字和为2^(n-1)(2的(n-1)次方)。

5、 (a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

6、 第n行的第m个数和第n-m个数相等,即C(n,m)=C(n,n-m),这是组合数性质。