×

arctan1 an

arctan1(arctan1怎么算)

jnlyseo998998 jnlyseo998998 发表于2022-11-09 11:38:12 浏览3382 评论0

抢沙发发表评论

本文目录

arctan1怎么算

arctan1=π/4=45°。

计算过程如下:

1、 arctan表示反三角函数,令y=arctan(1),则有tany=1。

2、由于 tan(π/4) = 1,所以y=π/4=45°。

arctan 就是反正切的意思,例如:tan45度=1,则arctan1=45度,就是求“逆”的运算,就好比乘法的“逆”运算是除法一样。

不是特殊函数值的反正切,需要通过计算器求解。类似的还有arcsin就是反正弦,sin30度=1/2,则arcsin1/2=30度,此外,还有arccos 和arccot 等等。

扩展资料:

三角函数的反函数,是多值函数。它们是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2《y《π/2;反余切函数y=arccot x的主值限在0《y《π。

反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).

反三角函数主要是三个:

y=arcsin(x),定义域,图象用红色线条;

y=arccos(x),定义域,图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sinarcsin(x)=x,定义域

证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得

其他几个用类似方法可得。

Arctan1等于多少,arctan0等于多少

Arctan1等于π/4,arctan0等于0;

Arctan1等于45°,arctan0等于0°。

拓展资料:

在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。

为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:

1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;

2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);

3、为了使研究方便,常要求所选择的区间包含0到π/2的角;

4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。